Advertisement

Wireless Personal Communications

, Volume 79, Issue 1, pp 599–610 | Cite as

A High Gain and Low Flicker Noise CMOS Mixer with Low Flicker Noise Corner Frequency Using Tunable Differential Active Inductor

  • Hojjat Babaei Kia
  • Abu Khari A’ain
Article

Abstract

This paper presents the design of a high conversion gain and low flicker noise down conversion CMOS double balanced Gilbert cell mixer using \(0.18\,\upmu \hbox {m}\) CMOS technology. The high conversion gain and low flicker noise mixer is implemented by using a differential active inductor (DAI) circuit and cross-coupled current injection technique within the conventional double-balanced Gilbert cell mixer. A cross-coupled current bleeding circuit is used to inject the current to the switching stage to decrease the flicker noise. Instead of spiral inductor, a DAI with high tunability of the inductor and quality factor is used to tune out the parasitic capacitance effect and decrease the leakage current that has a harmonic component and produce the flicker noise. By tuning the DAI, the flicker noise corner frequency is reduced to 150 Hz. The proposed circuit is simulated with Cadence Spectra and the simulation results shows the NF of 11.2 dB, conversion gain of 23.7 dB and IIP3 of \(-6\) dB for an RF frequency of 2.4 GHz. The excellent LO-RF, LO-IF, RF-LO and RF-IF isolations of \(-60, -110, -52\) and \(-64\) dB are achieved respectively. The total power consumption is 10.5 mW from a 1.8 V DC power supply.

Keywords

CMOS mixer Conversion gain (CG) Flicker noise  Noise figure Differential active inductor (DAI) Flicker noise corner frequency 

References

  1. 1.
    Razavi, B. (1997). Design considerations for direct-conversion receivers. IEEE Transactions on Circuits and Systems II Analog and Digital Signal Processing, 44(6), 428–435. doi: 10.1109/82.592569.CrossRefGoogle Scholar
  2. 2.
    Pokharel, R. K., Yano, Y., Abdelghany, M. A., Kanaya, H., & Yoshida, K. (2010). Design of high linearity low flicker noise 5.2 GHz down-conversion mixer for direct conversion receiver. In IEEE Asia pacific conference on circuits and systems (APCCAS), 2010 (Vol., no., pp. 64–67). doi: 10.1109/APCCAS.2010.5774950.
  3. 3.
    Park, J., Lee, C.-H., Kim, B.-S., & Laskar, J. (2006). Design and analysis of low flicker-noise CMOS mixers for direct-conversion receivers. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4372–4380.Google Scholar
  4. 4.
    Mirzaei, A., Darabi, H., Leete, J. C., & Chang, Y. (2010). Analysis and optimization of direct-conversion receivers with 25% duty-cycle current-driven passive mixers. IEEE Transactions on Circuits and Systems I Regular Papers, 57(9), 2353–2366. doi: 10.1109/TCSI.2010.2043014.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Vahidfar, M. B., & Shoaei, O. (2008). A high IIP2 mixer enhanced by a new calibration technique for zero-IF receivers. IEEE Transactions on Circuits and Systems II Express Briefs, 55(3), 219–223. doi: 10.1109/TCSII.2008.918998.CrossRefGoogle Scholar
  6. 6.
    Mirzaei, A., Darabi, H., Leete, J. C., Juan, K., & Yazdi, A. (2009). Analysis and optimization of current-driven passive mixers in narrowband direct-conversion receivers. IEEE Journal of Solid-State Circuits, 44(10), 2678–2688. doi: 10.1109/JSSC.2009.2027937.CrossRefGoogle Scholar
  7. 7.
    Zhou, S., & Chang, M.-C. F. (2005). A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver. IEEE Journal of Solid-State Circuits, 40(5), 1084–1093. doi: 10.1109/JSSC.2005.845981.CrossRefGoogle Scholar
  8. 8.
    Wan, Q., Wang, C., et al. (2013). Design of a low voltage highly linear 2.4 GHz up-conversion mixer in 0.18 \(\mu \)m CMOS technology. Wireless Personal Communications, 70(1), 57–68.CrossRefGoogle Scholar
  9. 9.
    Wenyuan, L., Ji, C., & Zhigong, W. (2010). 2.4 GHz high linearity down-conversion mixer. In: International conference on microwave and millimeter wave technology (ICMMT), 2010 (Vol., no., pp. 2044–2047), 8–11 May 2010. doi: 10.1109/ICMMT.2010.5525195.
  10. 10.
    Chen, C.-H., Chiang, P.-Y., & Jou, C. F. (2009). A low voltage mixer with improved noise figure. Microwave and Wireless Components Letters IEEE, 19(2), 92–94. doi: 10.1109/LMWC.2008.2011329.CrossRefGoogle Scholar
  11. 11.
    Ho, S. S. K., & Saavedra, C. E. (2011). A low-noise self-oscillating mixer using a balanced VCO load. IEEE Transactions on Circuits and Systems I Regular Papers, 58(8), 1705–1712. doi: 10.1109/TCSI.2011.2106050.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Yoon, J., Kim, H., Park, C., Yang, J., Song, H., Lee, S., et al. (2008). A new RF CMOS Gilbert mixer with improved noise figure and linearity. IEEE Transactions on Microwave Theory and Techniques, 56(3), 626–631. doi: 10.1109/TMTT.2008.916942.CrossRefGoogle Scholar
  13. 13.
    Kia, H. B., A’ain, A. K., Grout, I., & Kamisian, I. (2012). A reconfigurable low-noise amplifier using a tunable active inductor for multistandard receivers. In Circuits systems and signal processing, (Vol. 32, pp. 979–992). Berlin: Springer.Google Scholar
  14. 14.
    Kia, H. B., & A’ain, A. K. (2012). A single-to-differential LNA using differential active inductor for GPS applications. Frequenz.Google Scholar
  15. 15.
    Kia, H. B., A’ain, A. K., Grout, I. (2013). Wide tuning-range CMOS VCO based on a tunable active inductor. International Journal of Electronics.Google Scholar
  16. 16.
    Xiao, H., Schaumann, R. (2007). A 5.4-GHz high-Q tunable active-inductor bandpass filter in standard digital CMOS technology. In Analog integrated circuits and signal processing, 2007–04-24 (Vol. 51, Issue: 1). Springer, Netherlands.Google Scholar
  17. 17.
    Lai, Q.-T., Mao, J.-F. (2010). A new floating active inductor using resistive feedback technique. In IEEE MTT-S international microwave symposium digest (MTT), 2010 (Vol., no., pp. 1748–1751), 23–28 May 2010. doi: 10.1109/MWSYM.2010.5517785.
  18. 18.
    Lee, T. H. (2004). The design of CMOS radio-frequency integrated circuits. Cambridge: Cambridge University Press.Google Scholar
  19. 19.
    Terrovitis, M. T., & Meyer, R. G. (1999). Noise in current-commutating CMOS mixers. IEEE Journal of Solid-State Circuits, 34, 772–783.CrossRefGoogle Scholar
  20. 20.
    Razavi, B. (2001). Design of analog CMOS integrated circuits. New York: McGraw-Hill.Google Scholar
  21. 21.
    Wei, B.-L., & Dai, Y.-J. (2012). Analysis and design of a 1.0-V CMOS mixer based on variable load technique. Microelectronics Journal, 43(12), 1003–1009. ISSN:0026–2692. doi: 10.1016/j.mejo.2012.07.015.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUrmia Branch, Islamic Azad UniversityUrmiaIran
  2. 2.Faculty of Electrical EngineeringUniversity Technology MalaysiaJohorMalaysia

Personalised recommendations