Wireless Personal Communications

, Volume 79, Issue 1, pp 453–471 | Cite as

Distributed Resource Allocation for Femtocell Networks: Regret Learning with Proportional Self-belief

  • Faiz Asraf Saparudin
  • Norsheila Fisal
  • Aimi S. A. Ghafar
  • Siti M. M. Maharum
  • Norshidah Katiran
  • Rozeha A. Rashid


Femtocell networks promise improvement in network quality and performance for dense wireless networks, but will suffer from inter-cell interference if resource management is not properly employed. This paper presents distributed joint resource allocation (sub-channel and power) to address co- and cross-tier interference issues in two-tier heterogeneous femtocell networks. Due to uncoordinated nature of femtocell base stations (HeNB) deployment, the interactions among self-interested HeNBs are formulated using game-theoretical tools. Then, we designed individual utility function for every HeNB in order to enforce cooperative behaviour among HeNBs as well as to avoid cross-tier interference towards macrocell user equipments within HeNB coverage. Based on the designed utility function, we propose a fully distributed adaptive learning algorithm with a proportional self-belief concept that can lead to correlated equilibrium with fast and decisive convergence. Finally, performance analysis on the proposed algorithm done in simulated environment showed positive results indicating improvements in terms of co- and cross-tier interference mitigation as compared to generic regret-based learning scheme and utility functions.


Resource allocation Game theory Regret learning  Femtocell 



This work is supported by Research Management Center (RMC), UTM and Ministry of Higher Education (MOHE), Malaysia, under GUP grant (Cost Center No.: Q.J130000.2623.09J81).


  1. 1.
    Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: A survey. Communications Magazine, IEEE, 46(9), 59–67.CrossRefGoogle Scholar
  2. 2.
    Han, Z., Niyato, D., Saad, W., Basar, T., & Hjorungnes, A. (2012). Game theory in wireless and communication networks. Cambridge, MA: Cambridge University Press.zbMATHGoogle Scholar
  3. 3.
    Giupponi, L. & Ibars C. (2010). Distributed interference control in OFDMA-based femtocells. In IEEE 21st international symposium on personal indoor and mobile radio communications (PIMRC) 2010 (pp. 1201–1206). IEEE.Google Scholar
  4. 4.
    He, G., Cottatellucci, L., & Debbah, M. (2010). The waterfilling game-theoretical framework for distributed wireless network information flow. EURASIP Journal on Wireless Communications and Networking, 2010(1), 482–975.Google Scholar
  5. 5.
    Mustika, I. W., Yamamoto, K., Murata, H. & Yoshida, S. (2011). Potential game approach for self-organized interference management in closed access femtocell networks. In 2011 IEEE 73rd vehicular technology conference (VTC spring) (pp. 1–5).Google Scholar
  6. 6.
    Aumann, R. J. (1974). Subjectivity and correlation in randomized strategies. Journal of mathematical Economics, 1(1), 67–96.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hart, S., & Mas-Colell, A. (2000). A simple adaptive procedure leading to correlated equilibrium. Econometrica, 68(5), 1127–1150.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Huang, J. W., & Krishnamurthy, V. (2011). Cognitive base stations in LTE/3GPP femtocells: A correlated equilibrium game-theoretic approach. IEEE Transactions on Communications, 59(12), 3485–3493.CrossRefGoogle Scholar
  9. 9.
    Zheng, J., Cai, Y., & Wu, D. (2012). Subcarrier allocation based on correlated equilibrium in multi-cell OFDMA systems. EURASIP Journal on Wireless Communications and Networking, 2012(1), 233.CrossRefGoogle Scholar
  10. 10.
    Bennis, M., Perlaza, S. M. & Debbah, M. (2012). Learning coarse correlated equilibria in two-tier wireless networks. In Communications (ICC), 2012 IEEE International Conference on (pp. 1592–1596). IEEE.Google Scholar
  11. 11.
    Wu, D., Cai, Y., Zhou, L., Zheng, Z., & Zheng, B. (2013). Cooperative strategies for energy-aware ad hoc networks: A correlated equilibrium game-theoretic approach. IEEE Transactions on Vehicular Technology, 62(5), 2303–2314.CrossRefGoogle Scholar
  12. 12.
    Han, Z., Pandana, C. & Liu, K. J. R. (2007). Distributive opportunistic spectrum access for cognitive radio using correlated equilibrium and no-regret learning. In 2007 IEEE wireless communications and networking conference (pp. 11–15). IEEE.Google Scholar
  13. 13.
    Lin, Z., & Van Der Schaar, M. (2009). On the correlated equilibrium selection for two-user channel access games. Signal Processing Letters, IEEE, 16(3), 156–159.CrossRefGoogle Scholar
  14. 14.
    Lai, W.-S., Chiang, M.-E., Lee, S.-C. & Lee, T.-S. (2013). Game theoretic distributed dynamic resource allocation with interference avoidance in cognitive femtocell networks. In 2013 IEEE wireless communications and networking conference (WCNC) (pp. 3364–3369).Google Scholar
  15. 15.
    3GPP. (2012). TR36.921 FDD Home eNode B (HeNB) Radio Frequency (RF) requirements analysis.Google Scholar
  16. 16.
    Lee, K., Jo, O., & Cho, D.-H. (2011). Cooperative resource allocation for guaranteeing intercell fairness in femtocell networks. IEEE Communications Letters, 15(2), 214–216.CrossRefGoogle Scholar
  17. 17.
    Rose, L., Perlaza, S. M. & Debbah, M. (2011). On the nash equilibria in decentralized parallel interference channels. In 2011 IEEE international conference on communication (ICC) (pp. 1–6).Google Scholar
  18. 18.
    Lasaulce, S., Debbah, M. & Altman, E. (2009). Methodologies for analyzing equilibria in wireless games. IEEE Signal Processing Magazine, 26(5), 41–52.Google Scholar
  19. 19.
    Aumann, R. J. (1987). Correlated equilibrium as an expression of Bayesian rationality. Econometrica: Journal of the Econometric Society, 55(1), 1–18.Google Scholar
  20. 20.
    Hart, S., & Schmeidler, D. (1989). Existence of correlated equilibria. Mathematics of Operations Research, 14(1), 18–25.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kennedy, J. & Eberhart, R. (2010). Particle swarm optimization. Proceedings of ICNN’95 International Conference on Neural Networks, 4, 1942–1948.Google Scholar
  22. 22.
    Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1). Cambridge, MA: Cambridge University Press.Google Scholar
  23. 23.
    Alcatel-Lucent. (2009). R4-092042 Simulation assumptions and parameters for FDD HeNB RF requirements.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Faiz Asraf Saparudin
    • 1
  • Norsheila Fisal
    • 1
  • Aimi S. A. Ghafar
    • 1
  • Siti M. M. Maharum
    • 1
  • Norshidah Katiran
    • 2
  • Rozeha A. Rashid
    • 1
  1. 1.UTM-MIMOS CoE in Telecommunication TechnologiesUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Department of Communication EngineeringUniversiti Tun Hussein Onn MalaysiaBatu PahatMalaysia

Personalised recommendations