Wireless Personal Communications

, Volume 78, Issue 2, pp 1345–1373 | Cite as

Secure-AKA: An Efficient AKA Protocol for UMTS Networks

Article

Abstract

In this paper, we propose an improved and efficient authentication and key agreement (AKA) protocol named “Secure-AKA” to prevent Universal Mobile Telecommunication System (UMTS) network from various attacks like man-in-the-middle attack, redirection attack, replay attack, active attacks in the corrupted UMTS networks, and especially denial of service attack. This protocol completely eliminates the need of counter synchronization between a mobile station and its home network, and protects the actual identity of each user over the network by generating a temporary identity during the authentication. The Secure-AKA protocol generates minimum communication and computation overheads as compared to UMTS-AKA, S-AKA, AP-AKA, EURASIP-AKA, COCKTAIL-AKA, X-AKA, and EXT-AKA protocols. On an average, Secure-AKA protocol reduces 65 % of the bandwidth consumption during the authentication process in comparison to UMTS-AKA, which is the maximum reduction of bandwidth by any AKA protocol referred in the paper.

Keywords

UMTS Authentication Identity Attacks Overheads 

References

  1. 1.
    Peinado, A. (2004). Privacy and authentication protocol providing anonymous channels in GSM. Computer Communication, 27(17), 1709–1715.CrossRefGoogle Scholar
  2. 2.
    Babu, B. S., & Venkataram, P. (2009). A dynamic authentication scheme for mobile transactions. International Journal of Network and Security, 8(1), 59–74.Google Scholar
  3. 3.
    Zhang, M. (2003). Provably-secure enhancement on 3GPP authentication and key agreement protocol. Verizon Communication, Cryptology, ePrint Rep. 2003/092.Google Scholar
  4. 4.
    Meyer, U., & Wetzel, S. (2004). A man-in-the-middle attack on UMTS. In Proceedings of 3rd ACM WiSe, New York (pp. 90–97).Google Scholar
  5. 5.
    Georgios, K., Constantinos, K., Stefanos, G., & Jong, H. P. (2009). Signaling-oriented DoS Attacks in UMTS Networks. Advances in Information Security and Assurance (ISA), LNCS, 5576, 280–289.CrossRefGoogle Scholar
  6. 6.
    Hamano, T., Suzuki, R., Ikegawa, T., & Ichikawa, H. (2004). A Redirection-based defense mechanism against flood-type attacks in large-scale ISP networks. In: 10th Asia-Pacific conference on communications and 5th international symposium on multi-dimensional mobile, communications (pp. 543–547).Google Scholar
  7. 7.
    Guha, R. K., Furqan, Z., & Muhammad, S. (2007). Discovering man-in-the-middle attacks in authentication protocols. In IEEE Military Communications Conference (MILCOM-2007) (pp. 1–7).Google Scholar
  8. 8.
    Lin, Y. B., Chang, M. F., Hsu, M. T., & Wu, L. Y. (2005). One-pass GPRS and IMS authentication procedure for UMTS. IEEE Journal of Selected Areas of Communications, 23(6), 1233–1239.CrossRefGoogle Scholar
  9. 9.
    Mobarhan, M. A., & Shahbahrami, A. (2012). Evaluation of security attacks on UMTS authentication mechanism. International Journal of Network Security and its Applications, 4(4), 37–52.CrossRefGoogle Scholar
  10. 10.
    3rd Generation Partnership Project; Technical Specification Group SA; 3G Security. (1999). Report on the evaluation of 3GPP standard confidentiality and integrity algorithms, version 1.0.0, 2000–2012, 3GPP, TR 33.909.Google Scholar
  11. 11.
    Yin, X., Wai, K. L., Ben, L., & Razeen, A. (2012). Dynamic regulation of mobile 3G/HSPA uplink buffer with receiver-side flow control. In 20th IEEE international conference on network protocols (ICNP) (pp. 1–10).Google Scholar
  12. 12.
    Xuejun, Z., Wei, G., Guohong, C., & Yiqi, D. (2011). Win-coupon: An incentive framework for 3G traffic offloading. In 19th IEEE international conference on network protocols (ICNP) (pp. 206–215).Google Scholar
  13. 13.
    Xiaoxiao, H., Deshpande, P., & Das S. R. (2011). Moving bits from 3G to metro-scale WiFi for vehicular network access: An integrated transport layer solution. In 19th IEEE international conference on network protocols (ICNP-2011) (pp. 353–362).Google Scholar
  14. 14.
    Ou, H. H., Hwang, M. S., & Jan, J. K. (2009). The UMTS-AKA protocols for intelligent transportation systems. EURASIP Journal on Wireless Communications and Networking, 2009, 1–12.Google Scholar
  15. 15.
    Cheng, K. M., Chang, T. Y., & Lo, J. W. (2010). Cryptanalysis of security enhancement for a modified authentication key agreement protocol. International Journal of Network Security, 11(1), 55–57.Google Scholar
  16. 16.
    Seo, D., & Sweeney, P. (1999). Simple authenticated key agreement algorithm. Electronics Letters, 35(13), 1073–1074.CrossRefGoogle Scholar
  17. 17.
    Godor, G. (2006). Novel authentication algorithm public key based cryptography in mobile phone systems. International Journal of Computer Science and Network Security, 6(2B), 126–134.Google Scholar
  18. 18.
    Tang, C., & Wu, D. O. (2008). An efficient mobile authentication scheme for wireless networks. IEEE Transactions on Wireless Communications, 7(4), 1408–1416.CrossRefGoogle Scholar
  19. 19.
    Murtaza, N. A. J. A., & Minhas, A. A. (2010). A novel security algorithm for universal mobile telecommunication system. International Journal of Multimedia and Ubiquitous Engineering, 5(1), 1–18.Google Scholar
  20. 20.
    Saxena, N., & Chaudhari, N. S. (2014). NS-AKA: An improved and efficient AKA protocol for 3G (UMTS) networks. In International conference on advances in computer science and electronics engineering (CSEE’14), Kuala Lampur, Malaysia (pp. 220–224).Google Scholar
  21. 21.
    Lee, C. C., Chen, C. L., Ou, H. H., & Chen, L. A. (2013). Extension of an efficient 3GPP authentication and key agreement protocol. Wireless Personal Communication, 68(3), 861–872.CrossRefGoogle Scholar
  22. 22.
    Al-Saraireh, J., & Yousef, S. (2). A new authentication protocol for UMTS mobile networks. EURASIP Journal of Wireless Communication Network, 2006, 19–30.Google Scholar
  23. 23.
    Chun, I. E., Ho, P. H., & Chen, H. Y. (2007). Nested one-time secret mechanisms for fast mutual authentication in mobile communications. In IEEE wireless communication and networking conference (WCNC) (pp. 2714–2719).Google Scholar
  24. 24.
    Zhang, M., & Fang, Y. (2005). Security analysis and enhancements of 3GPP authentication and key agreement protocol. IEEE Transactions on Wireless Communication, 4(2), 734–742.CrossRefGoogle Scholar
  25. 25.
    Huang, Y. L., Shen, C. Y., & Shieh, S. W. (2011). S-AKA: A provable and secure authentication key agreement protocol for UMTS networks. IEEE Transactions on Vehicular Technology, 60(9), 4509–4519.CrossRefGoogle Scholar
  26. 26.
    Huang, C. M., & Li, J. W. (2005). Authentication and key agreement protocol for UMTS with low bandwidth consumption. In 19th international conference AINA (pp. 392–397).Google Scholar
  27. 27.
    Al-Saraireh, J., & Yousef, S. (2006). Extension of authentication and key agreement protocol (AKA) for universal mobile telecommunication system (UMTS). International Journal of Theoretical and Applied Computer Sciences, 1(1), 109–118.Google Scholar
  28. 28.
    Ou, H. H., Hwang, M. S., & Jan, J. K. (2010). A cocktail protocol with the authentication and key agreement on the UMTS. Journal of Systems and Software, 83(2), 316–325.CrossRefGoogle Scholar
  29. 29.
    Wu, S., Zhu, Y., & Pu, Q. (2010). Security analysis of a cocktail protocol with the authentication and key agreement on the UMTS. Communication Letters, 14(4), 366–368.CrossRefGoogle Scholar
  30. 30.
    Abliz, M., & Znati, T. (2009). A guided tour puzzle for denial of service prevention. In Annual computer security applications conference (ACSAC), Hawaii, USA (pp. 279–288).Google Scholar
  31. 31.
    Feng, W., Kaiser, E., & Luu, A. (2005). Design and implementation of network puzzles. In INFOCOM 2005 and 24th annual joint conference of IEEE computer and communications societies (vol. 4, pp. 2372–2382).Google Scholar
  32. 32.
    Juels, A., & Brainard, J. (1999). Client puzzles: A cryptographic countermeasure against connection depletion attacks. In Network and distributed system security symposium (NDSS) (pp. 151–165).Google Scholar
  33. 33.
    Rivest, R. L., Shamir, A., & Wagner, D. A. (March 1996). Time-lock puzzles and timed-release crypto. Technical Report TR-684, MIT Laboratory for Computer Science.Google Scholar
  34. 34.
    Stebila, D., & Berkant, U. (2009). Towards denial-of-service-resilient key agreement protocols. In 14th Australasian conference on information security and privacy, LNCS 5594 (pp. 389–406).Google Scholar
  35. 35.
    Stebila, D., Kuppusamy, L., Rangasamy, J., Boyd, C., & Nieto, J. G. (Feb 2013). Stronger difficulty notions for client puzzles and denial-of-service-resistant protocols. Cryptology 649, 1–28.Google Scholar
  36. 36.
    Rangasamy, J., Stebila, D., Kuppusary, L., Boyd, C., & Nieto, J. G. (2012). Efficient modular exponentiation-based puzzles for denial-of-service protection. Information Security and Cryptology (ICISC), LNCS, 7259, 319–331.Google Scholar
  37. 37.
    Feng, W., Kaiser, E., & Luu, A. (2005). The design and implementation of network puzzles. In IEEE international conference on computer communication (INFOCOM), Miami (vol. 4, pp. 2372–2382).Google Scholar
  38. 38.
    Tritilanunt, S., Boyd, C., Foo, E., & Gonz’alez, J. M. (2007). Toward non-parallelizable client puzzles. In 6th international conference on cryptology and network security, Singapore (vol. 4856, pp. 247–264).Google Scholar
  39. 39.
    Saxena, N., & Chaudhari, N. S. (2014). SecureSMS: A secure SMS protocol for VAS and other applications. Journal of Systems and Software, 90, 138–150.CrossRefGoogle Scholar
  40. 40.
    Saxena, N., & Chaudhari, N. S. (2012). A secure approach for SMS in GSM network. In International IT conference and exhibition ACM CUBE-2012, Pune, India (pp. 59–64).Google Scholar
  41. 41.
    Michalas, A., Komninos, N., & Prasad, N. R. (2011). Mitigate DoS and DDoS attack in mobile ad hoc networks. International Journal of Digital Crime and Forensics (IJDCF), 3(1), 1–38.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Discipline of Computer Science and EngineeringIndian Institute of TechnologyIndoreIndia
  2. 2.Department of Computer Science and EngineeringVisvesvarya National Institute of TechnologyNagpurIndia

Personalised recommendations