Wireless Personal Communications

, Volume 78, Issue 2, pp 1129–1141 | Cite as

Interaction between Symbol Timing Offset and Channel Interpolation in OFDM Systems: BER Analysis and Performance Degradation

  • Serafin Salido
  • F. Javier Lopez-MartinezEmail author
  • Eduardo Martos-Naya
  • J. Tomas Entrambasaguas


In orthogonal frequency division multiplexing (OFDM) systems, since the cyclic prefix (CP) is designed to be longer than the channel impulse response, there exists a certain range within the CP where symbol timing synchronization can be accomplished avoiding adjacent inter symbol interference. However, the appearance of a linear phase term across subcarriers in the frequency-domain due to symbol timing offset (STO) is known to affect the performance of channel interpolation. In this paper, we analyze the performance degradation due to the interaction between STO and channel interpolation in OFDM systems affected by multipath Rayleigh fading. Particularly, simple closed-form expressions for the bit error rate (BER) are obtained for different quadrature amplitude modulation constellations. Results show that there exists an irreducible BER floor due to STO and channel interpolation, which depends on the STO, the subcarrier index, the pilot spacing and the correlation between pilot subcarriers.


Bit error rate Channel estimation errors Digital video broadcasting  Linear interpolation Orthogonal frequency division multiplexing Timing offset 


  1. 1.
    Goldsmith, A. (2005). Wireless communications. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  2. 2.
    Morelli, M., Kuo, C. C. J., & Pun, M. O. (2007). Synchronization techniques for orthogonal frequency division multiple access (OFDMA) a tutorial review. Proceedings of the IEEE, 95(7), 1394–1427.CrossRefGoogle Scholar
  3. 3.
    Dharmawansa, P., Rajatheva, N., & Minn, H. (2009). An exact error probability analysis of OFDM systems with frequency offset. IEEE Transactions on Communications, 57(1), 26–31.CrossRefGoogle Scholar
  4. 4.
    Yiling, Wu, Zhao, Yuping, & Li, Dou. (2012). Sampling frequency offset estimation for pilot-aided OFDM systems in mobile environment. Wireless Personal Communications, 62(1), 215–226.CrossRefGoogle Scholar
  5. 5.
    Hung, Ching-P, & Su, Yu T. (1999). Joint frequency and symbol synchronization schemes for an OFDM system. Wireless Personal Communications, 10(3), 309–317.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Schmidl, T. M., & Cox, D. C. (1997). Robust frequency and timing synchronization for OFDM. IEEE Transactions on Communications, 45(12), 1613–1621.CrossRefGoogle Scholar
  7. 7.
    van de Beek, J. J., Sandell, M., & Borjesson, P. O. (1997). ML estimation of time and frequency offset in OFDM systems. IEEE Transactions on Signal Processing, 45(7), 1800–1805.zbMATHCrossRefGoogle Scholar
  8. 8.
    Chen, S.-H., He, W.-H., Chen, H.-S., & Lee, Y. (2003). Mode detection, synchronization, and channel estimation for DVB-T OFDM receiver. In Global Telecommunications Conference, 2003 GLOBECOM ’03. IEEE 5, 2416–2420.Google Scholar
  9. 9.
    Chang, Dah-Chung. (2008). Effect and compensation of symbol timing offset in OFDM systems with channel interpolation. IEEE Transactions on Broadcasting, 54(4), 761–770.CrossRefGoogle Scholar
  10. 10.
    Coleri, S., Ergen, M., Puri, A., & Bahai, A. (2002). Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Transactions on Broadcasting, 48(3), 223–229.CrossRefGoogle Scholar
  11. 11.
    Zhang, Wei, & Xia, Xiang-Gen, & Ching, P. C. (2006). Optimal training and pilot pattern design for OFDM systems in Rayleigh fading. IEEE Transactions on Broadcasting, 52(4), 505–514.Google Scholar
  12. 12.
    Baek, J.-S., & Seo, J.-S. (2012). Efficient pilot patterns and channel estimations for MIMO-OFDM systems. IEEE Transactions on Broadcasting 99(1).Google Scholar
  13. 13.
    Hsieh, Meng-Han, & Wei, Che-Ho. (1998). Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels. IEEE Transactions on Consumer Electronics, 44(1), 217–225.CrossRefGoogle Scholar
  14. 14.
    Park, Jeongho, Kim, Jihyung, Park, Myonghee, Ko, Kyunbyoung, Kang, Changeon, & Hong, Daesik. (2006). Performance analysis of channel estimation for OFDM systems with residual timing offset. IEEE Transactions on Wireless Communications, 5(7), 1622–1625.CrossRefGoogle Scholar
  15. 15.
    Ko, C. C., Mo, R., & Shi, M. (2005). A new data rotation based CP synchronization scheme for OFDM systems. IEEE Transactions on Broadcasting, 51(3), 315–321.CrossRefGoogle Scholar
  16. 16.
    Li, Yushan, & Cao, Zisheng. (2009). Acquisition algorithms and structures for STiMi receiver. IEEE Transactions on Broadcasting, 55(2), 290–299.CrossRefGoogle Scholar
  17. 17.
    Baek, Jong-Seob, & Seo, Jong-Soo. (2011). Improved CIR-based receiver design for DVB-T2 system in large delay spread channels: Synchronization and equalization. IEEE Transactions on Broadcasting, 57(1), 103–113.CrossRefGoogle Scholar
  18. 18.
    Rugini, L., & Banelli, P. (2005). BER of OFDM systems impaired by carrier frequency offset in multipath fading channels. IEEE Transactions on Wireless Communications, 4(5), 2279–2288.CrossRefGoogle Scholar
  19. 19.
    Lopez-Martinez, F. J., Martos-Naya, E., Paris, J. F., & Fernandez-Plazaola, U. (2010). Generalized BER analysis of QAM and its application to MRC under imperfect CSI and interference in Ricean fading channels. IEEE Transactions on Vehicular Technology, 59(5), 2598–2604.CrossRefGoogle Scholar
  20. 20.
    Martos-Naya, E., Paris, J. F., Fernandez-Plazaola, U., & Goldsmith, A. (2008). Exact BER analysis for M-QAM modulation with transmit beamforming under channel prediction error. IEEE Transactions on Wireless Communications, 7(10), 3674–3678.CrossRefGoogle Scholar
  21. 21.
    Lopez-Martinez, F. J., Martos-Naya, E., Paris, J. F., & Entrambasaguas, J. T. (2011). Exact closed-form BER analysis of OFDM systems in the presence of IQ imbalances and ICSI. IEEE Transactions on Wireless Communications, 10(6), 1914–1922.CrossRefGoogle Scholar
  22. 22.
    Scharf, L. (1991). Statistical signal processing. Prentice hall.Google Scholar
  23. 23.
    Krondorf, M., Liang, T.-J., & Fettweis, G. (2008). On synchronization of opportunistic radio OFDM systems. In Vehicular Technology Conference , 2008. VTC Spring 2008. IEEE (pp. 1686–1690).Google Scholar
  24. 24.
    Speth, M., Fechtel, S. A., Fock, G., & Meyr, H. (1999). Optimum receiver design for wireless broad-band systems using OFDM. I. IEEE Transactions on Communications, 47(11), 1668–1677.CrossRefGoogle Scholar
  25. 25.
    Tan, Peng, & Beaulieu, N. C. (2008). Effect of channel estimation error on bit error probability in OFDM systems over Rayleigh and Ricean fading channels. IEEE Transactions on Communications, 56(4), 675–685.Google Scholar
  26. 26.
    Lopez-Martinez, F. J., Martos-Naya, E., Paris, J. F., & Goldsmith, A. J. (2009). BER Analysis for MIMO-OFDM Beamforming with MRC under Channel Prediction and Interpolation Errors. In Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE (pp. 1–7).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Serafin Salido
    • 1
  • F. Javier Lopez-Martinez
    • 2
    Email author
  • Eduardo Martos-Naya
    • 3
  • J. Tomas Entrambasaguas
    • 3
  1. 1.Agilent Inc.MalagaSpain
  2. 2.Wireless Systems Lab, Electrical Engineering DepartmentStanford UniversityStanfordUSA
  3. 3.Dpto. Ingenieria de ComunicacionesUniversidad de MalagaMalagaSpain

Personalised recommendations