Advertisement

Wireless Personal Communications

, Volume 77, Issue 4, pp 3051–3079 | Cite as

Vertical Handover Solutions Over LTE-Advanced Wireless Networks: An Overview

  • A. M. Miyim
  • Mahamod Ismail
  • Rosdiadee Nordin
Article

Abstract

The convergence of multitude radio access networks forming a cluster of seamless heterogeneous wireless environment has made the wireless communication industry meet the paradigm of always best connected, where various mobile devices are able to access numerous types of applications and services. However, achieving such landmarks could not be possible without difficulties which this paper tries to highlight some of the technical challenges underlying seamless vertical handover. It provides a general overview of the mobility management process including a brief on multi-homing mobility protocol and focuses on vertical handover decision making techniques, hi ghlighting some radio interface standar and analysed some handover approaches. The paper proposes fast intelligent inter-layer network selection as a new handover approach to select the best network among the candidate networks, where Quality of Service, handover delay and improved data bit rates are set to be achieved.

Keywords

Inter-layer network selection Vertical handover decision algorithm Multihoming Heterogeneous wireless networks Mobility management protocols 

Notes

Acknowledgments

This research work is sponsored by Universiti Kebangsaan Malaysia (UKM) under the project code: DPP-006-2013. The authors wish to thank the sponsor for the funding and support. The authors equally thank the reviewers for their professionalism and useful comment to improve the quality of the work while reviewing the manuscript.

References

  1. 1.
    3GPP TR 22.234. Requirements on 3GPP system to wireless local area network (WLAN) interworking, 2004–2009.Google Scholar
  2. 2.
    Walke, B. H., Mangold, S., & Berlemann, L. (2007, January). IEEE 802 wireless systems: Protocols, multi-hop mesh/relaying, performance and spectrum coexistence, 1st ed. Wiley [Online]. http://www.worldcat.org/isbn/0470014393.
  3. 3.
    IEEE 802.21 WG. (2009, January). IEEE standard for local and metropolitan area networks. Part 21: Media Independent Handover Services. IEEE Standard 802.21.Google Scholar
  4. 4.
    IEEE1900.4. (2009, February). Working group on architectural building blocks enabling network device distributed decision making for optimized radio resource usage in heterogeneous wireless access networks.Google Scholar
  5. 5.
    IEEE 1900.5 working group on policy language and policy architectures for managing cognitive radio for dynamic spectrum access applications, 2006–2008.Google Scholar
  6. 6.
    Fernandes, S., & Karmouch, A. (2012). Vertical mobility management architectures in wireless networks: A comprehensive survey and future directions. IEEE Communications Surveys & Tutorials, 14(1), 45–63.Google Scholar
  7. 7.
    3GPP TS 36.300 V 11.5.0. (2013, March). Technical specification group radio access network; Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN); Overall description; Stage 2, Release 11.Google Scholar
  8. 8.
    Zekri, M., Jouaber, B., & Zeghlache, D. (2012). A review on mobility management and vertical handover solutions over heterogeneous wireless networks. Computer Communications, 35, 2055–2068. doi: 10.1016/j.comcom.2012.07.011.CrossRefGoogle Scholar
  9. 9.
    Kim, R. Y., et al. (2010). Advanced handover schemes in IMT-advanced systems. IEEE Communications Magazine, 48(8), 78–85.Google Scholar
  10. 10.
    Eastwood, L., Migaldi, S., Xie, Q., & Gupta, V. (2008). Mobility using IEEE 802.21 in a heterogeneous IEEE 802.16/802.11-based, IMT-advanced (4G) network. IEEE Wireless Communications, 15(2), 26–34.Google Scholar
  11. 11.
    Miyim, A. M., Ismail, M., Nordin, R., & Taha Ismail, M. (2011). A multi-layer network selection function for downlink handover scheme in LTE and LTE-advanced. In 2011 IEEE student conference on research and development (SCOReD), Kuala Lumpur, pp 64–69.Google Scholar
  12. 12.
    Bagnulo, M., & Garcia-Martinez, A. (2013). SAVI: The IETF standard in address validation. IEEE Communications Magazine, 66–73.Google Scholar
  13. 13.
    Ghosh, A., RATASUK, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). LTE-advanced: Next-generation wireless broadband technology. IEEE Wireless Communications, 17(3), 10–22.Google Scholar
  14. 14.
    Yang, S.-F., Wu, J.-S., & Huang, H.-H. (2008). A vertical media-independent handover decision algorithm across Wi-Fi and WiMAX networks. In IEEE conference proceedings.Google Scholar
  15. 15.
    Ying, W., Jun, Y., Yun, Z., Gen, L., & Ping, Z. (2008). Vertical handover decision in an enhanced media independent handover framework. IEEE Wireless Communications and Networking Conference, WCNC, 2693–2698. doi: 10.10.1109/WCNC.2008.472.
  16. 16.
    Gerla, M., & Kleinrock, L. (2011). Vehicular networks and the future of the mobile internet. Computer Network, 55(2), 457–469.CrossRefGoogle Scholar
  17. 17.
    Hudson, G., Lord, A., & Smith, P. (2004, July). IPv6 address prefix reserved for documentation. IETF Networking, Group RFC3849, www.ietf.org/html/rfc3849.
  18. 18.
    Vasu, K., et al. (2012). QoS-aware fuzzy rule-based vertical handoff decision algorithm incorporating a new evaluation model for wireless heterogeneous networks. EURASIP Journal on Wireless Communications and Networking, 2012, 322. doi: 10.1186/1687-1499-2012-322.CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Chai, R., Zhou, W.-G., Chen, Q.-B., & Tang, L. (2009, September). A survey on vertical handoff decision for heterogeneous wireless networks. In IEEE youth conference on information, computing and telecommunication, pp. 279–282.Google Scholar
  21. 21.
    Horrich, S., Jamaa, S. B., & Godlewski, P. (2007). Adaptive vertical mobility decision in heterogeneous networks. International Conference on Wireless and Mobile, Communications, 44, 44–50.Google Scholar
  22. 22.
    Zekri, M., Pokhrel, J., Jouaber, B., & Zeghlache, D. (2011, October). Reputation for vertical handover decision making. In 17th Asia-Pacific conference on communications (APCC) 2nd-5th, Sutera harbour resort. Sabah, Malaysia: Kota Kinabalu.Google Scholar
  23. 23.
    Koundourakis, G., Axiotis, D., & Theologou, M. (2007). Network-based Access Selection in Composite Radio Environments. IEEE Wireless Communications and Networking Conference, 3877–3883. doi: 10.1109/WCNC.2007.709.
  24. 24.
    Liao, H., Tie, L., & Du, Z. (2006). A vertical handover decision algorithm based on fuzzy control theory. In IEEE proceedings of the first international multi-symposiums on computer and computational sciences (IMSCCS’06), pp. 309–313, doi: 10.1109/IMSCCS.2006.173.
  25. 25.
    Jo, J., & Cho, J. (2008). Cross-layer optimized vertical handover schemes between mobile WiMAX and 3G networks. KSII Transactions on Internet and Information Systems, 2(4), 171–183. doi: 10.3837/TIIS.2008.04.001.CrossRefGoogle Scholar
  26. 26.
    Kassar, M., Kervella, B., & Pujolle, G. (2008). An overview of vertical handover decision strategies in heterogeneous wireless networks. Computer Communications, 31(10), 2607–2620.CrossRefGoogle Scholar
  27. 27.
    Stevens-Navarro, E., & Wong, S. (May 2006). Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. 63rd IEEE Vehicular Technology Conference, 2, 947–951.Google Scholar
  28. 28.
    Harada, H., et al. (2013). IEEE dynamic spectrum access networks standards committee. IEEE Communications Magazine, 51, 105–111.CrossRefGoogle Scholar
  29. 29.
    Song, Q., & Jamalipour, A. (2010, May). A network selection mechanism for next generation networks. In IEEE international conference on, communications, vol. 2.Google Scholar
  30. 30.
    Carneiro, G., Ruela, J., & Ricardo, M. (2004). Cross-layer design in 4G wireless terminals. IEEE Wireless Communications, 11(2), 7–13.Google Scholar
  31. 31.
    Sheng-mei, L., Su, P., Zheng-kun, M., Qing-min, M., & Ming-hai, X. (May 2010). A simple additive weighting vertical handoff algorithm based on SINR and AHP for heterogeneous wireless networks. International Conference on Intelligent Computation Technology and Automation, 1, 347–350.Google Scholar
  32. 32.
    Zekri, M., Jouaber, B., & Zeghlache, D. (2010). Context aware vertical handover decision making in heterogeneous wireless networks. In Proceedings of LCN, Denver, Colorado, USA, Vol. 10, pp. 780–784.Google Scholar
  33. 33.
    Sharna, S., & Murshed, M. (2010, September). Performance analysis of vertical handoff algorithms with QoS parameter differentiation. In 12th IEEE international conference on high performance computing and, communications, pp. 623–628.Google Scholar
  34. 34.
    Guo, Q., Zhu, J., & Xu, X. (2005, May). An adaptive multi-criteria vertical handoff decision algorithm for radio heterogeneous network. In IEEE international conference on communications, ICC 2005, Vol. 4, pp. 2769–2773.Google Scholar
  35. 35.
    Ahmed, A., Boulahia, L., & Gaiti, D. Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys & Tutorials, PP(99), 1–36. doi: 10.1109/SURV.2013.082713.00141. (online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field).
  36. 36.
    Wang, L.., & Kuo, G.-S. Mathematical modeling for network selection in heterogeneous wireless networks—A tutorial. IEEE Communications Surveys & Tutorials.Google Scholar
  37. 37.
    Stevens-Navarro, E., Wong, V., & Lin, Y. (2007). A vertical handoff decision algorithm for heterogeneous. Wireless Networks, 3199–3204. doi:10.11143.5249.Google Scholar
  38. 38.
    Afif, M., Martins, P., Tabbane, S., & Godlewski, P. (2006, May). A SCTP-Layer 2 cross layer mechanism for data handover in wireless networks (application to EGPRS). In Proceedings of ICT conference.Google Scholar
  39. 39.
    Ahlund, C., & Zaslavsky, A. (2003). Multihoming with mobile IP. High-Speed Networks and Multimedia communications: Lecture notes in computer science (pp. 235–243). Berlin/Heidelberg: Springer.Google Scholar
  40. 40.
    Chang, B.-J., & Chen, J.-F. (2008). Cross-layer-based adaptive vertical handoff with predictive RSS in heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 57(6), 3679–3692. doi: 10.1109/TVT.2008.921619.CrossRefMathSciNetGoogle Scholar
  41. 41.
    Lassoued, I., Bonnin, J. M., Hamouda, B. Z., & Belghith, A. (2008). A methodology for evaluating vertical handoff decision mechanisms. In 7th IEEE international conference on networking, pp. 377–384, doi: 10.1109/ICN.2008.71.
  42. 42.
    Baldini, G., Sallent, O., Subik, S., & Wietfeld, C. (2011). The evolution of ICT in public safety domains: Challenges and opportunities. International Journal of Disaster Recovery and Business, Continuity, 2.Google Scholar
  43. 43.
    Chevrollier, N., & Golmie, N. (2005). On the use of wireless network technologies in healthcare environments. In Proceedings of the fifth IEEE workshop on applications and services in wireless networks (ASWN 2005).Google Scholar
  44. 44.
    Niyato, D., & Hossain, E. (2009). Dynamics of network selection in heterogeneous wireless networks: An evolutionary game approach. IEEE Transactions on Vehicular Technology, 58(4), 2008–2017. doi: 10.1109/TVT.2008.2004588. (online).CrossRefGoogle Scholar
  45. 45.
    Hoydis, J., Kobayashi, M., & Debbah, M. (March 2011). Green small-cell networks: A cost- and energy-efficient way of meeting the future traffic demands. IEEE Vehicular Technology Magazine, 6(1), 37–43. doi: 10.1109/MVT.2010.939904.
  46. 46.
    Andrews, J. G., et al. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. M. Miyim
    • 1
  • Mahamod Ismail
    • 1
  • Rosdiadee Nordin
    • 1
  1. 1.Department of Electrical, Electronics and Systems EngineeringUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia

Personalised recommendations