Wireless Personal Communications

, Volume 76, Issue 2, pp 231–244 | Cite as

CloudThinking as an Intelligent Infrastructure for Mobile Robotics

  • Rui L. Aguiar
  • Diogo Gomes
  • João Paulo Barraca
  • Nuno Lau
Article

Abstract

Mobile robotics is a transforming field that presents a varying set of challenges. The discussion on the autonomy of (self-powered) robots is not settled, and as the communication infrastructure evolves, centralized concepts become more attractive over distributed concepts. This paper presents the CloudThinking architecture applied to intelligent cloud-based robotic operation. CloudThinking offloads most of complex robotic tasks to a central cloud, which retrieves inputs from the environment as a whole in order to instruct the robots to perform its actions. CloudThinking is a natural approach to the orchestration of multiple specialized robotic systems, defining the best mechanisms for reaching a goal. Furthermore, this architecture provides a set of automatic features which can be useful for application developers. These features can fully exploit novel cloud tools development as it becomes available, providing a time-resilient infrastructure of easy upgrade. The resulting approach has the potential to create a different set of market for robotic application developers.

Keywords

Mobile robotics Cloud-based approaches Computer Thinking 

References

  1. 1.
    Thrun, S. (2010). What we’re driving at. Official Blog, Google, October 9, 2010. http://googleblog.blogspot.com/2010/10/what-were-driving-at.html. Accessed Apr 18, 2013.
  2. 2.
    Arumugam, S., Kalle, R. K., & Prasad, A. R. (2013). Wireless robotics: Opportunities and challenges. Wireless Personal Communications, 70(3), 1033–1058.CrossRefGoogle Scholar
  3. 3.
    Sadeghi, R., Barraca, J. P., & Aguiar, R. L. (2013). Collaborative relaying strategies in autonomic management of mobile robotics. Wireless Personal Communications, 70(3), 1077–1096. doi:10.1007/s11277-013-1104-1.CrossRefGoogle Scholar
  4. 4.
    Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application. Swarm Robotics, Lecture Notes in Computer Science, 3342, 10–20.CrossRefGoogle Scholar
  5. 5.
    Nehmzow, U. (1993). Mobile robotics: A practical introduction. Berlin: Springer.Google Scholar
  6. 6.
    Almeida, L., Santos, F., Facchinetti, T., Pedreiras, P., Silva, V., & Lopes, L. S. (2004). Coordinating distributed autonomous agents with a real-time database: The CAMBADA project. In Computer and Information Sciences-ISCIS 2004 (pp. 876–886), Berlin: Springer.Google Scholar
  7. 7.
    Horn, P. (2001). Autonomic computing: IBM’s perspective on the state of information technology. IBM technical report.Google Scholar
  8. 8.
    IBM. (2003). An architectural blueprint for autonomic computing. IBM technical report.Google Scholar
  9. 9.
    Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H. F., Karmarkar, A., & Lafon, Y., (Eds.). (2007). SOAP version 1.2 part 1: Messaging framework (2nd ed.). World Wide Web Consortium, 27 April.Google Scholar
  10. 10.
    Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures. Ph.D. Dissertation, chapter 5, University of California, Irvine, AAI9980887.Google Scholar
  11. 11.
    Object Management Group. Common object request broker architecture. Object Management Group Standard. http://www.omg.org/spec/
  12. 12.
    Shin, S.-O., Lee, J.-O., & Baik, D.-K. (2007). A mobile agent-based multi-robot design method for high-assurance. In High assurance systems engineering symposium, 2007. HASE ’07. 10th IEEE (pp. 389–390).Google Scholar
  13. 13.
    Darche, P., Raverdy, P.-G., & Commelin, E. (1995). ActNet: The actor model applied to mobile robotic environments. In OBPDC 1995 (pp. 273–289).Google Scholar
  14. 14.
    Mohan, Y., & Ponnambalam, S.G. (2009). An extensive review of research in swarm robotics. In World Congress on nature and biologically inspired computing. NaBIC 2009 (pp. 140–145).Google Scholar
  15. 15.
    Han, Q., Wang, Q., Zhu, X., & Xu, J. (2011). Path planning of mobile robot based on improved ant colony algorithm. In 2011 international conference on consumer electronics, communications and networks (CECNet) (pp. 531–533).Google Scholar
  16. 16.
    Kuffner, J. J. (2010). Cloud-enabled robots. In IEEE-RAS international conference on humanoid robotics. Nashville, TN.Google Scholar
  17. 17.
    Goldberg, K. (2013). Cloud robotics. Retrieved July 2013. http://goldberg.berkeley.edu/cloud-robotics/.
  18. 18.
    Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51, 107–113.CrossRefGoogle Scholar
  19. 19.
    Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Rob, W., & Ng, A. Y. (2009). ROS: An open-source Robot Operating System. ICRA Workshop on Open Source Software, 3(3.2)Google Scholar
  20. 20.
    Dang, H., & Allen, P. (2012). Learning grasp stability. In 2011 IEEE international conference on robotics and automation (ICRA) (pp. 2392–2397). IEEE.Google Scholar
  21. 21.
    Gostai (2013). GostaiNet. www.gostai.com/activities/consumer.
  22. 22.
    Arumugam, R., Enti, V., Bingbing, L., Xiaojun, W., Baskaran, K., Kong, A. F. F., et al. (2011). DAvinCi: A cloud computing framework for service robots. In IEEE international conference on robotics and automation (ICRA) (pp. 3084–3089).Google Scholar
  23. 23.
    Waibel, M., Beetz, M., Civera, J., d’Andrea, J., Elfring, J., Galvez-Lopez, D., et al. (2011). RoboEarth—a World Wide Web for robots. IEEE Robotics and Automation Magazine, 18, 69–82.CrossRefGoogle Scholar
  24. 24.
    Hunziker, D., Gajamohan, M., Waibel, M., & D’Andrea, R. (2013). Rapyuta: The RoboEarth cloud engine. In Proceedings IEEE international conference on robotics and automation (ICRA) (pp. 438–444). Karlsruhe, Germany.Google Scholar
  25. 25.
    Anderson, T., Peterson, L., Shenker, S., & Turner, J. (2005). Overcoming the internet impasse through virtualization. Computer, 38(4), 34–41.CrossRefGoogle Scholar
  26. 26.
    McKeown, N., et al. (2008). OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 38(2), 69–74.CrossRefGoogle Scholar
  27. 27.
    Jones, J. L. (2006). Robots at the tipping point: The road to iRobot Roomba. IEEE on Robotics and Automation Magazine, 13(1), 76–78.CrossRefGoogle Scholar
  28. 28.
    Malehorn, K., Liu, W., Im, H., Bzura, C., Padir, T., & Tulu, B. (2012). The emerging role of robotics in home health care. AMCIS 2012 Proceedings, Paper 62.Google Scholar
  29. 29.
    Moradi, H., Kawamura, K., Prassler, E., Muscato, G., Fiorini, P., et al. (2013). Service robotics (the rise and bloom of service robots). IEEE on Robotics and Automation Magazine, 20(3), 22–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rui L. Aguiar
    • 1
  • Diogo Gomes
    • 1
  • João Paulo Barraca
    • 1
  • Nuno Lau
    • 2
  1. 1.Instituto de TelecomunicaçõesUniversidade de AveiroAveiroPortugal
  2. 2.IEETAUniversidade de AveiroAveiroPortugal

Personalised recommendations