Wireless Personal Communications

, Volume 76, Issue 2, pp 149–168 | Cite as

Smart Cities via Data Aggregation

  • Javier Poncela
  • Panagiotis Vlacheas
  • Raffaele Giaffreda
  • Suparna De
  • Massimo Vecchio
  • Septimiu Nechifor
  • Raquel Barco
  • Mari Carmen Aguayo-Torres
  • Vera Stavroulaki
  • Klaus Moessner
  • Panagiotis Demestichas


Cities have an ever increasing wealth of sensing capabilities, recently including also internet of things (IoT) systems. However, to fully exploit such sensing capabilities with the aim of offering effective city-sensing-driven applications still presents certain obstacles. Indeed, at present, the main limitation in this respect consists of the vast majority of data sources being served on a “best effort” basis. To overcome this limitation, we propose a “resilient and adaptive IoT and social sensing platform”. Resilience guarantees the accurate, timely and dependable delivery of the complete/related data required by smart-city applications, while adaptability is introduced to ensure optimal handling of the changing requirements during application provision. The associated middleware consists of two main sets of functionalities: (a) formulation of sensing requests: selection and discovery of the appropriate data sources; and (b) establishment and control of the necessary resources (e.g., smart objects, networks, computing/storage points) on the delivery path from sensing devices to the requesting applications. The middleware has the intrinsic feature of producing sensing information at a certain level of detail (geographical scope/timeliness/accuracy/completeness/dependability) as requested by the applications in a given domain. The middleware is assessed and validated at a proof-of-concept level through innovative, dependable and real-time applications expected to be highly reproducible across different cities.


Resilient IoT Adaptive and scalable sensing Social IoT Smart city sensing toolkit Sensing zoom-in 


  1. 1.
    Wakefield, J. (2013). Tomorrow’s cities: Do you want to live in a smart city? http://www.bbc.co.uk/news/technology-22538561. 19 August 2013.
  2. 2.
    Wakefield, J. (2013). Tomorrow’s cities: How big data is changing the world. http://www.bbc.co.uk/news/technology-23253949. 27 August 2013.
  3. 3.
    Internet of things (IoT) and machine to machine (M2M) communications. Challenges and opportunities: Final position paper. Technology Strategy Board, May 2013.Google Scholar
  4. 4.
    Xively—Public Cloud for the Internet of Things (2013). https://xively.com/.
  5. 5.
    Nimbits. (2013). Service for connecting people, sensors and devices on the cloud. http://nimbits.com/.
  6. 6.
    ThinkSpeak. (2013). Internet of Things—ThinkSpeak. https://www.thingspeak.com/.
  7. 7.
    ThingWorx. (2013). The 1st application platform for the connected world. http://www.thingworx.com/.
  8. 8.
    Christophe, B., Verdot, V., & Toubiana, V. (2011). Searching the ’Web of Things’, In Proceedings of fifth IEEE international conference on semantic computing, Palo Alto, CA (pp. 308–315).Google Scholar
  9. 9.
    Luckenbach, T., Gober, P., Arbanowski, S., Kotsopoulos, A., & Kim, K. (2005). TinyREST—A Protocol for Integrating Sensor Networks Into the Internet. In Proceedings of workshop on real-world wireless sensor networks (REALWSN ‘05), Stockholm, Sweden.Google Scholar
  10. 10.
    Guinard, D., Trifa, V., Pham, T., & Liechti, O. (2009). Towards physical mashups in the web of things. In Proceedings of the 6th IEEE international conference on networked sensing systems (INSS’09), Piscataway, NJ, USA (pp. 196–199).Google Scholar
  11. 11.
    CONVERGENCE (2013). http://www.ict-convergence.eu/.
  12. 12.
  13. 13.
  14. 14.
  15. 15.
    Goolsby, R. (2010). Social media as crisis platform: The future of community maps/crisis maps. ACM Transactions on Intelligent Systems and Technology (TIST), 1(1), 1–11.CrossRefGoogle Scholar
  16. 16.
    Ushahidi Haiti project website (2013). http://www.haiti.ushahidi.com.
  17. 17.
    Furtado, V., Caminha, C., Ayres, L., & Santos, H. (2012). Open government and citizen participation in law enforcement via crowd mapping. Intelligent Systems, IEEE, 27(4), 63–69.CrossRefGoogle Scholar
  18. 18.
    DiY Smart Experiences (DiYSE) (2013). http://dyse.org.
  19. 19.
    Cyganiak, R., & Jentzsch, A. (2011). The linking open data cloud diagram. http://lod-cloud.net/.
  20. 20.
    Thomas, R. W., Friend, D. H., Dasilva, L. A., & Mackenzie, A. B. (2006). Cognitive networks: Adaptation and learning to achieve end-to-end performance objectives. IEEE Communications Magazine, 44(12), 51–57.CrossRefGoogle Scholar
  21. 21.
    Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. Computer, 36(1), 41–50.CrossRefMathSciNetGoogle Scholar
  22. 22.
    Vlacheas, P., Giaffreda, R., Stavroulaki, V., Kelaidonis, D., Somov, A., Foteinos, V., Poulios, G., Biswas, A.-R., Moessner, K., Demestichas, P. (2013). Enabling smart cities through a cognitive management framework for the internet of things. IEEE Communications Magazine. 51( 6). June 2013.Google Scholar
  23. 23.
    Cardone, G., Foschini, L., Borcea, C., Bellavista, P., Corradi, A., Talasila, M., et al. (2013). Fostering participAction in smart cities: A geo-social crowdsensing platform. IEEE Communications Magazine, 51(6).Google Scholar
  24. 24.
    Controls drives and automation (2012). http://content.yudu.com/Library/A1ykj7/ControlsDrivesampAut/resources/44.htm. August 2012.
  25. 25.
    Eagle, N., & Pentland, A. (2006). Reality mining: Sensing complex social systems. Personal and Ubiquitous Computing, 10(4), 255–268.CrossRefGoogle Scholar
  26. 26.
    Howe, J. (2006). The rise of crowdsourcing. Wired Magazine, 14(6), 1–4.MathSciNetGoogle Scholar
  27. 27.
    Lynch, C. (2008). Big data: How do your data grow? Nature, 455(7209), 28–29.CrossRefGoogle Scholar
  28. 28.
    Mitton, N., Papavassiliou, S., Puliafito, A., & Trivedi, K. S. (2012). Combining cloud and sensors in a smart city environment. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1–10.CrossRefGoogle Scholar
  29. 29.
    Kramer, J., & Magee, J. (2007). Self-managed systems: An architectural challenge. In L. C. Briand & A. L. Wolf (Eds.), Future of Software Engineering (FOSE 2007) (pp. 259–268). MN, USA: Minneapolis.CrossRefGoogle Scholar
  30. 30.
    Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., & Prehofer, C., et al. (2012). On patterns for decentralized control in self-adaptive systems, software engineering for self-adaptive systems SefSAS II. Lecture Notes in Computer Science, Springer.Google Scholar
  31. 31.
    Calinescu, R., Ghezzi, C., Kwiatkowska, M., & Mirandola, R. (2012). Self-adaptive software needs quantitative verification at runtime. Communications of the ACM, 55(9), 69–77.CrossRefGoogle Scholar
  32. 32.
    Zhang, L-J., & Zhou, Q. (2009). CCOA: Cloud computing open architecture. In IEEE International Conference on Web Services (ICWS 2009), Los Angeles, CA. July 2009.Google Scholar
  33. 33.
    Chow, R., Golle, P., & Jakobsson, M. et al. (2009). Controlling data in the cloud: outsourcing computation without outsourcing control. In Proceedings of the 2009 ACM workshop on cloud computing security, Chicago, IL.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Javier Poncela
    • 1
  • Panagiotis Vlacheas
    • 2
  • Raffaele Giaffreda
    • 3
  • Suparna De
    • 4
  • Massimo Vecchio
    • 3
  • Septimiu Nechifor
    • 5
  • Raquel Barco
    • 1
  • Mari Carmen Aguayo-Torres
    • 1
  • Vera Stavroulaki
    • 2
  • Klaus Moessner
    • 4
  • Panagiotis Demestichas
    • 2
  1. 1.ETSI TelecomunicationUniversidad de MalagaMalagaSpain
  2. 2.University of PiraeusPiraeusGreece
  3. 3.CREATE-NETTrentoItaly
  4. 4.Centre for Communication Systems Research (CCSR)University of SurreyGuildford UK
  5. 5.Siemens Corporate Technology, Siemens SRLBrasov, Eroilor 3aRomania

Personalised recommendations