Wireless Personal Communications

, Volume 76, Issue 2, pp 125–147 | Cite as

Infrastructure for Intelligent Automation Services in the Smart Grid

  • Rune Hylsberg Jacobsen
  • Søren Aagaard Mikkelsen


The electricity grid is undergoing a radical transformation from a production-driven to a demand-driven energy delivery platform known as the smart grid. The integration of a large amount of renewable and distributed energy resources, together with new patterns of electricity production, accentuates the need for research in information and communication technologies to control bi-directional energy flows. The European FP7 project: “Energy Demand Aware Open Services for Smart Grid Intelligent Automation” is contributing to this research by providing an intelligent infrastructure for service deployment for the smart grid. The project defines a system architecture that provides interoperability between wireless sensors in home area networks connected over the Internet to a service provider function deployed in a cloud infrastructure. A key component in this infrastructure is the Home Energy Controlling Hub that, on the one hand, provides a platform for monitoring and aggregation of electricity consumption data from devices and appliances and, on the other hand, is the link between the deployed intelligent automation services and the home. To ensure openness and simplicity, the proposed infrastructure is based on the representational state transfer style architecture. This is adopted by implementing the emerging ZigBee IP and Smart Energy Profile 2.0 standards that to a wide extend conform with the Internet Protocol suite and state-of-the art web services development.


Home area network Smart energy profile Intelligent automation services Smart grid 



The research leading to these results has received funding from the European Union Seventh Framework programme (FP7/2007-2013) under Grant Agreement N\(^{\circ }\) 317761.


  1. 1.
    Moslehi, K., & Kumar, R. (2010). A reliability perspective of the smart grid. IEEE Transactions on Smart Grid, 1(1), 57–64.CrossRefGoogle Scholar
  2. 2.
    Kailas, A., Cecchi, V., & Mukherjee, A. (2013). Chapter 2—A survey of contemporary technologies for smart home energy management. Handbook of green information and communication systems (pp. 35–56). New York: Academic Press.Google Scholar
  3. 3.
    Papazoglou, M. P. (2003). Service-oriented computing: Concepts, characteristics and directions. In 2003 Proceedings of the fourth international conference on Web information, systems engineering (pp. 3–12).Google Scholar
  4. 4.
    Rusitschka, S., Eger, K., & Gerdes, C. (2010). Smart grid data cloud: A model for utilizing cloud computing in the smart grid domain. In 2010 first IEEE international conference on smart grid, communications (pp. 483–488).Google Scholar
  5. 5.
    Gomez, C., & Paradells, J. (2010). Wireless home automation networks: A survey of architectures and technologies. IEEE Communications Magazine, 48(6), 92–101.CrossRefGoogle Scholar
  6. 6.
    Sauter, T., & Lobashov, M. (2011). End-to-end communication architecture for smart grids. IEEE Transactions on Industrial Electronics, 58(4), 1218–1228.CrossRefGoogle Scholar
  7. 7.
    Baker, F., & Meyer, D. (June 2011). Internet protocols for the smart grid. Internet Society, RFC 6272.Google Scholar
  8. 8.
    Zigbee ip specification. Technical report, ZigBee Alliance, 2013.Google Scholar
  9. 9.
    Ieee standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements part 15.4: Wireless medium access control (mac) and physical layer (phy) specifications for low-rate wireless personal area networks (wpans), 2006. IEEE Std 802.15.4-2006.Google Scholar
  10. 10.
    Zigbee specification (version 2). Technical Report Document 053474r17, ZigBee Alliance, January 17 2008.Google Scholar
  11. 11.
    Montenegro, G., Kushalnagar, N., Hui, J., & Culler, D. (Sept. 2007). Transmission of ipv6 packets over ieee 802.15.4 networks. Internet Society, RFC 4944.Google Scholar
  12. 12.
    Shelby, Z., Chakrabarti, S., Nordmark, E., & Bormann, C. (Nov. 2012). Neighbor discovery optimization for ipv6 over low-power wireless personal area networks (6lowpans). Internet Society, RFC 6775.Google Scholar
  13. 13.
    Islam, S., & Grégoire, J.-C. (2010). Network edge intelligence for the emerging next-generation internet. Future Internet, 2(4), 603–623.CrossRefGoogle Scholar
  14. 14.
    Postel, J. (Aug. 1980). User datagram protocol. Internet Society, RFC 768.Google Scholar
  15. 15.
    Postel, J. (Sept. 1981). Transmission control protocol. Internet Society, RFC 793.Google Scholar
  16. 16.
    Conta, A., Deering, S., & Gupta, M. (March 2006). Internet control message protocol (icmpv6) for the internet protocol version 6 (ipv6) specification. Internet Society, RFC 4443.Google Scholar
  17. 17.
    Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., et al. (2012). Rpl: Ipv6 routing protocol for low-power and lossy networks. Internet Society, RFC 6550.Google Scholar
  18. 18.
    Dierks, T., & Rescorla, E. (Aug. 2008). The transport layer security (tls) protocol version 1.2. Internet Society, RFC 5246.Google Scholar
  19. 19.
    Forsberg, D., Ohba, Y., Patil, B., Tschofenig, H., & Yegin, A. (May 2008). Protocol for carrying authentication for network access (pana). Internet Society, RFC 5191.Google Scholar
  20. 20.
    Cheshire, S., & Krochmal, M. (Feb. 2013). Multicast dns. Internet Society, RFC 6762.Google Scholar
  21. 21.
    Cheshire, S., & Krochmal, M. (Feb. 2013). Dns-based service discovery. Internet Society, RFC 6763.Google Scholar
  22. 22.
    Kelsey, R. K. (2013). Mesh link establishment. Internet Society, draft-kelsey-interea-mesh-link-establishment-05.Google Scholar
  23. 23.
    Huston, G., & Michaelson, G. (May 2008). Measuring ipv6 deployment. In RIPE 56 meeting May 2008, Retrieved 2013-06-10.Google Scholar
  24. 24.
    Nordmark, E., & Gilligan, R. (Oct. 2005). Basic transition mechanisms for ipv6 hosts and routers. Internet Society, RFC 4213.Google Scholar
  25. 25.
    Mackay, M., Edwards, C., Dunmore, M., Chown, T., & Carvalho, G. (2003). A scenario-based review of ipv6 transition tools. IEEE Internet Computing, 7(3), 27.CrossRefGoogle Scholar
  26. 26.
    Jacobsen, R., Toftegaard, T. S., & Kjærgaard, J. K. (2011). IP connected low power wireless personal area networks in the future internet (pp. 191–213). Technologies and protocols for future internet design: Reinventing the Web. IGI Global.Google Scholar
  27. 27.
    Hui, J., & Vasseur, J. P. (March 2012). The routing protocol for low-power and lossy networks (rpl) option for carrying rpl information in data-plane datagrams. Internet Society, RFC 6553.Google Scholar
  28. 28.
    Hui, J. W., & Culler, D. E. (2010). Ipv6 in low-power wireless networks. Proceedings of the IEEE, 98(11), 1865–1878.CrossRefGoogle Scholar
  29. 29.
    Vasseur, J. P., Kim, M., Pister, K., Dejean, N., & Barthel, D. (March 2012). Routing metrics used for path calculation in low-power and lossy networks. Internet Society, RFC 6551.Google Scholar
  30. 30.
    Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., & Levkowetz, H. (June 2004). Extensible authentication protocol (eap). Internet Society, RFC 3748.Google Scholar
  31. 31.
    Simon, D., Aboba, B., & Hurst, R. (March 2008). The eap-tls authentication protocol. Internet Society, RFC 5216.Google Scholar
  32. 32.
    Rescorla, E. (May 2000). Http over tls. Internet Society, RFC 2818.Google Scholar
  33. 33.
    Rescorla, E., & Modadugu, N. (Jan. 2012). Datagram transport layer security version 1.2. Internet Society, RFC 6347.Google Scholar
  34. 34.
    Berners-Lee, T., Fielding, R., & Masinter, L. (Jan. 2005). Uniform resource identifier (uri): Generic syntax. Internet Society, RFC 3986.Google Scholar
  35. 35.
    Richardson, L., & Ruby, S. (2007). Restful web services (1st ed). Sebastopol: O’Reilly.Google Scholar
  36. 36.
    Shelby, Z., Hartke, K., Bormann, C., & Frank, B. (April 2013). Constrained application protocol (coap). Internet Society, draft-ietf-core-coap-15.Google Scholar
  37. 37.
    Energy management system application program interface (ems-api)—part 301: Common information model (cim) base. Standard IEC61970-301:2013, International Electrotechnical Commission (IEC), 2013.Google Scholar
  38. 38.
    Smart energy profile 2 application protocol standard. Technical Report Document 13-0200-00, ZigBee Alliance, 2013.Google Scholar
  39. 39.
    Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., & Polk, W. (May 2008). Internet x.509 public key infrastructure certificate and certificate revocation list (crl) profile. Internet Society, RFC 5280.Google Scholar
  40. 40.
    Smart energy profile 2.0 uml model, November 2008. ZigBee Alliance, Document 13-0201.Google Scholar
  41. 41.
    Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., et al. (June 1999). Hypertext transfer protocol—http/1.1, Internet Society, RFC 2616.Google Scholar
  42. 42.
    Extensible markup language (xml) 1.0 (5th ed.). Technical report, World Wide Web Consortium (W3C), November 2008.Google Scholar
  43. 43.
    Efficient xml interchange (exi) format 1.0. Technical report, World Wide Web Consortium (W3C), March 2011.Google Scholar
  44. 44.
    Crockford, D. (July 2006). The application/json media type for javascript object notation (json). Internet Society, RFC 4627.Google Scholar
  45. 45.
    Web application description language. Technical report, World Wide Web Consortium (W3C), August 2009.Google Scholar
  46. 46.
    W3c xml schema definition language. Technical report, World Wide Web Consortium (W3C), April 5 2012.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rune Hylsberg Jacobsen
    • 1
  • Søren Aagaard Mikkelsen
    • 1
  1. 1.Department of EngineeringAarhus UniversityAarhus NDenmark

Personalised recommendations