Advertisement

Wireless Personal Communications

, Volume 77, Issue 4, pp 2793–2816 | Cite as

Novel Advanced Broadcast Scheme for Efficient Safety Message Collision Alleviation in Vehicular Networks

  • Chien-Tung Lu
  • Chih-Lun Chang
  • I-Hsien Liu
  • Jung-Shian LiEmail author
Article

Abstract

Safety message broadcasting may cause a broadcast storm in vehicular ad-hoc network without an effective feedback mechanism. In particular, with increasing number of vehicles, serious collisions and incurred long delays are not acceptable for emergency safety messages. In this paper, we proposed an advanced broadcast scheme by the functionality of distributed coordination function and multi-channel operation in dedicated short range communication to decrease collision probability and increase received ratio of safety messages. The proposed scheme can increases safety message transmission efficiency and reduce the latency by delicately designing a rebroadcast probability, choosing the channel and selecting the backoff timer. After broadcasting in the control channel, transmitters return to their original service channel. Then, the vehicles receiving the safety message should inform the others in the same service channel to switch to the control channel for the safety message. Afterwards, the vehicles broadcast the safety message once and go back to the original service channel. This method can inform the other vehicles in different channels to increase the broadcast penetration. The proposed scheme can work without global positioning system (GPS). However, GPS can adapt the rebroadcast probability on hot spots to enhance the efficiency of the proposed scheme. Through detailed simulations, the proposed scheme is shown to be more efficient compared to the existing ones.

Keywords

Safety message Advanced broadcast DSRC DCF Multi-channel operation 

Abbreviations

AdvB

Advanced broadcast scheme

CCH

Control channel

CSMA/CA

Carrier sense multiple access with collision avoidance

CTS

Clear to send

CW

Contention window

DCF

Distributed coordination function

DIFS

Distributed coordination function inter-frame space

DSRC

Dedicated short range communication

GPS

Global positioning system

RTS

Request to send

SCH

Service channel

STA

Station

VANET

Vehicular ad-hoc network

WAVE

Wireless access in vehicular environments

WSM

WAVE short message

Notes

Acknowledgments

This work was supported in part by the National Science Council under Grant NSC 101-2219-E-006-003.

References

  1. 1.
    Jiang, D. & Delgrossi, L. (2008). IEEE 802.11p: Towards an international standard for wireless access in vehicular environments. In IEEE Vehicular Technology Conference. doi: 10.1109/VETECS.2008.458.
  2. 2.
    Wang, S. Y., Chou, C. L., Liu, K. C., Ho, T. W., Hung, W. J., Huang, C. F., et al. (2009). Improving the channel utilization of IEEE 802.11p/1609 networks. In IEEE Wireless Communications and Networking Conference, (WCNC 2009). doi: 10.1109/WCNC.2009.4917753.
  3. 3.
    Hartenstein, H., & Laberteaux, K. P. (2008). A tutorial survey on vehicular ad hoc networks. IEEE Communications Magazine, 46(6), 164–171.CrossRefGoogle Scholar
  4. 4.
    Tonguz, O., Wisitpongphan, N., Bai, F., Mudalige, P., & Sadekar, V. (2007). Broadcasting in VANET, 2007 mobile networking for vehicular environments. doi: 10.1109/MOVE.2007.4300825.
  5. 5.
    Csiszar, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(3), 339–348.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Cover, T. (1972). Broadcast channels. IEEE Transactions on Information Theory, 18(1), 2–14.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Caire, G., & Shamai, S. (2003). On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Transactions on Information Theory, 49(7), 1691–1706.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Wang, Z., & Chigan, Ch. (2007). Cooperation enhancement for message transmission in VANETs. Wireless Personal Communications, 43(1), 141–156.CrossRefGoogle Scholar
  9. 9.
    Martinez, F. J., Toh, Ch K, Cano, J.-C., Calafate, C. T., & Manzoni, P. (2012). Determining the representative factors affecting warning message dissemination in VANETs. Wireless Personal Communications, 67(2), 295–314.CrossRefGoogle Scholar
  10. 10.
    Peng, W., & Lu, X. C. (2000). On the reduction of broadcast redundancy in mobile ad hoc networks. In Proceedings of the 1st ACM International Symposium on Mobile Ad Hoc Networking & Computing (MobiHoc’00). doi: 10.1109/MOBHOC.2000.869221.
  11. 11.
    Weingarten, H., Steinberg, Y., & Shamai, S. (2006). The capacity region of the Gaussian multiple-input multiple-output broadcast channel. IEEE Transactions on Information Theory, 52(9), 3936–3964.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Tonguz, O. K., Wisitpongphan, N., Parikh, J. S., Bai, F., Mudalige, P., & Sadekar, V. K. (2006). On the broadcast storm problem in ad hoc wireless networks. In 3rd International Conference on Broadband Communications, Networks and Schemes (BROADNETS 2006). doi: 10.1109/BROADNETS.2006.4374403.
  13. 13.
    Chiasserini, C.-F., Gaeta, R., Garetto, M., Gribaudo, M., & Sereno, M. (2006). Efficient broadcasting of safety messages in multihop vehicular networks. In 20th International Parallel and Distributed Processing Symposium (IPDPS 2006). doi: 10.1109/IPDPS.2006.1639638.
  14. 14.
    Bastani, S., Landfeldt, B., & Libman, L. (2011). On the reliability of safety message broadcast in urban vehicular ad hoc networks. In Proceedings of the 14th ACM International Conference on Modeling, Analysis and Aimulation of Wireless and Mobile Schemes (MSWiM 2011). doi: 10.1145/2068897.2068951.
  15. 15.
    IEEE. (2007). IEEE standard for information technology—Telecommunications and information exchange between schemes—Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999).Google Scholar
  16. 16.
    IEEE. (2012). IEEE standard for information technology—Telecommunications and information exchange between schemes Local and metropolitan area networks-Specific requirements Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007).Google Scholar
  17. 17.
    Aysal, T. C., Yildiz, M. E., Sarwate, A. D., & Scaglione, A. (2009). Broadcast gossip algorithms for consensus. IEEE Transactions on Signal Processing, 57(7), 2748–2761.CrossRefMathSciNetGoogle Scholar
  18. 18.
    Ma, X., Zhang, J., Yin, X., & Trivedi, K. S. (2012). Design and analysis of a robust broadcast scheme for VANET safety-related services. IEEE Transactions on Vehicular Technology, 61(1), 46–61.CrossRefGoogle Scholar
  19. 19.
    Huang, L., Leng, S., Shao, C., & Liu, C. (2012). An information relevance related broadcast scheme for safety packets in VANETs. In 12th International Conference on Control Automation Robotics and Vision (ICARCV 2012), doi: 10.1109/ICARCV.2012.6485381.
  20. 20.
    IEEE. (2011). IEEE standard for wireless access in vehicular environments (WAVE)—Multi-channel operation. IEEE Std 1609.4-2010 (Revision of IEEE Std 1609.4-2006).Google Scholar
  21. 21.
    Uzcategui, R., & Acosta-Marum, G. (2009). Wave: A tutorial. IEEE Communications Magazine, 47(5), 126–133.CrossRefGoogle Scholar
  22. 22.
    IEEE. (2010). IEEE standard for information technology—Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 6: Wireless access in vehicular environments, IEEE Std 802.11p-2010.Google Scholar
  23. 23.
    IEEE. (2006). IEEE trial-use standard for wireless access in vehicular environments (WAVE)—Resource manager. IEEE Std 1609.1-2006.Google Scholar
  24. 24.
    IEEE. (2006). IEEE trial-use standard for wireless access in vehicular environments—Security services for applications and management messages. IEEE Std, 1609(2-2006).Google Scholar
  25. 25.
    IEEE. (2010). IEEE standard for wireless access in vehicular environments (WAVE)—Networking services, IEEE Std 1609.3-2010 (Revision of IEEE Std 1609.3-2007), Dec. 30 2010.Google Scholar
  26. 26.
    Yang, H., Jiang, H., & Liu, L. (2008). Performance analysis of mobility models in sparse ad-hoc networks. In 27th Chinese Control Conference (CCC 2008). doi: 10.1109/CHICC.2008.4605283.
  27. 27.
    Tariq, M. M. B., Ammar, M., & Zegura, E. (2006). Message ferry route design for sparse ad hoc networks with mobile nodes. In Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’06). doi: 10.1145/1132905.1132910.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chien-Tung Lu
    • 1
  • Chih-Lun Chang
    • 1
  • I-Hsien Liu
    • 1
  • Jung-Shian Li
    • 1
    Email author
  1. 1.Department of Electrical Engineering, Institute of Computer and Communication EngineeringNational Cheng Kung UniversityT’ai-nanTaiwan, ROC

Personalised recommendations