Wireless Personal Communications

, Volume 77, Issue 4, pp 2549–2563 | Cite as

Adaptively Grouped Multilevel Space–Time Trellis Codes Combined with Beamforming and Component Code Selection

Article

Abstract

The performance of adaptively grouped multilevel space–time trellis codes (AGMLSTTCs) is limited due to predefined component space–time trellis codes (STTCs) used in multilevel coding and lack of beamforming. In this paper, we present improvement in performance of AGMLSTTCs by combining beamforming and dynamic selection of component STTCs with AGMLSTTCs to design new codes henceforth referred to as weighted adaptively grouped multilevel dynamic space–time trellis codes. The channel state information at transmitter (CSI) is used to select a code set having different sets of generator sequences. The selected code set is used for generating dynamic STTCs (DSTTCs). The DSTTCs are used as component codes in multilevel coding. We use a single full-diversity DSTTC at some initial levels and multiple DSTTCs at some later levels. The single full diversity DSTTC at each initial level spans all transmit antennas and the DSTTC at each later level spans a group of transmit antennas. The CSI is further used to provide a beam forming scheme by properly weighting transmitted signals. Weights are selected that based on CSI at transmitter. The simulation results show that AGMLSTTCs combined with beamforming and DSTTCs provide significant improved error performance over grouped multilevel space–time trellis codes and AGMLSTTCs.

Keywords

Multilevel coding Dynamic space–time trellis code  Rayleigh fading Adaptive antenna grouping Beamforming 

References

  1. 1.
    Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space–time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Baro, S., Bauch, G., & Hansmanna, A. (2000). Improved codes for space–time trellis-coded modulation. IEEE Communications Letters, 4, 20–22.CrossRefGoogle Scholar
  3. 3.
    Chen, Z., Vucetic, B., & Yuan, J. (2001). Improved space–time trellis coded modulation scheme on slow Rayleigh fading channels. Electronics Letters, 37, 440–441.CrossRefGoogle Scholar
  4. 4.
    Mavares, D., & Torres, R. P. (2006). Space–time code selection for transmit antenna diversity systems. In Proceedings of the first mobile computing and wireless communication international conference (pp. 83–87).Google Scholar
  5. 5.
    Liu, L., & Jafarkhani, H. (2006). Space–time trellis codes based on channel-phase feedback. IEEE Transactions on Communications, 54, 2186–2198.CrossRefGoogle Scholar
  6. 6.
    Celebi, M. E., Sahin, S., & Aygolu, U. (2007). Full rate full diversity space–time block code selection for more than two transmit antennas. IEEE Transactions on Wireless Communications, 6, 16–19.CrossRefGoogle Scholar
  7. 7.
    Eksim, A., & Celebi, M. E. (2010). Received SNR based code and antenna selection for limited feedback communication. In Proceedings of 18th conference of IEEE signal processing and communications applications (pp. 21–24).Google Scholar
  8. 8.
    Molisch, A. F., & Win, M. Z. (2004). MIMO systems with antenna selection. IEEE Microwave Magazine, 5(1), 46–56.CrossRefGoogle Scholar
  9. 9.
    Gore, D. A., & Paulraj, A. J. (2002). MIMO antenna subset selection with space-time coding. IEEE Transactions on Signal Processing, 50(10), 2580–2588.CrossRefGoogle Scholar
  10. 10.
    Wong, W. H., & Larsson, E. G. (2003). Orthogonal space–time block coding with antenna selection and power allocation. Electronics Letters, 39(4), 379–381.CrossRefGoogle Scholar
  11. 11.
    Tao, M., Li, Q., & Garg, H. K. (2007). Extended space–time block coding with transmit antenna selection over correlated fading channels. IEEE Transactions on Wireless Communications, 6(9), 3137–3141.CrossRefGoogle Scholar
  12. 12.
    Chen, Z., Vucetic, B., & Yuan, J. (2003). Space–time trellis codes with transmit antenna selection. Electronics Letters, 39(11), 854–855.CrossRefGoogle Scholar
  13. 13.
    Tarokh, V., Naguib, A., Seshadri, N., & Calderbank, A. R. (1999). Combined array processing and space–time coding. IEEE Transactions on Information Theory, 45(4), 1121–1128.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Narasimhan, R. (2003). Spatial multiplexing with transmit antenna and constellation selection for correlated MIMO fading channels. IEEE Transactions on Signal Processing, 51(11), 2829–2838.CrossRefGoogle Scholar
  15. 15.
    Yuan, J. (2006). Adaptive transmit antenna selection with pragmatic space–time trellis codes. IEEE Transactions on Wireless Communications, 5(7), 1706–1715.CrossRefGoogle Scholar
  16. 16.
    Huang, Y., Xu, D., & Yang, L. (2006). Adaptive antenna grouping for space–time block coding and spatial multiplexing hybrid system. In Proceedings of the first mobile computing and wireless communication international conference (MCWC 2006) (pp. 88–92).Google Scholar
  17. 17.
    Jongren, G., Skoglund, M., & Ottersten, B. (2002). Combining beam forming and orthogonal space–time block coding. IEEE Transactions on Information Theory, 48, 611–627.CrossRefGoogle Scholar
  18. 18.
    Zhou, S., & Giannakis, G. (2002). Optimal transmitter eigen-beamforming and space–time block coding based on channel mean feedback. IEEE Transactions on Signal Processing, 50, 2599–2613.CrossRefGoogle Scholar
  19. 19.
    Liu, J., & Gunawan, E. (2003). Combining ideal beam forming and Alamouti space–time block codes. Electronics Letters, 39, 1258–1259.CrossRefGoogle Scholar
  20. 20.
    Li, Y., Vucetic, B., Santoso, A., & Chen, Z. (2003). Space–time trellis codes with adaptive weighting. Electronics Letters, 39, 1833–1834. doi:10.1049/el:20031180.CrossRefGoogle Scholar
  21. 21.
    Santoso, A., Li, Y., & Vucetic, B. (2004). Weighted space–time trellis codes. Electronics Letters, 40, 254–256.CrossRefGoogle Scholar
  22. 22.
    Imai, H., & Hirakawa, S. (1977). A new multilevel coding method using error correcting codes. IEEE Transactions on Information Theory, 23(3), 371–377.CrossRefMATHGoogle Scholar
  23. 23.
    Calderbank, A. (1989). Multilevel codes and multistage decoding. IEEE Transactions on Communications, 37(3), 222–229.CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Waschmann, U., Fischer, R. F., & Huber, J. B. (1999). Multilevel codes: Theoretical concepts and practical design rules. IEEE Transactions on Information Theory, 45(5), 1361–1391.CrossRefGoogle Scholar
  25. 25.
    Ma, Shang-Chih, & Lin, Chia-Hao. (2010). Multilevel concatenated space–time block codes. IEICE Transactions on Fundamentals of Electronics, Communications and Computer, E93–A(10), 1845–1847.Google Scholar
  26. 26.
    Baghaie, A. M. (2008). Multilevel space–time trellis codes for Rayleigh fading channels. ME Thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/bitstream/10092/2101/1/Thesis_fulltext.pdf. Accessed 15 Nov 2009.
  27. 27.
    Sharma, S. (2012). A novel weighted multilevel space–time trellis coding scheme. Computers and Mathematics with Applications, 63(1), 280–287.CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Baghaie, A. M., Martin, P. A., & Taylor, D. P. (2010). Grouped multilevel space–time trellis codes. IEEE Communications Letters, 14(3), 232–234.CrossRefGoogle Scholar
  29. 29.
    Jain, D., & Sharma, S. (2013). Adaptively grouped multilevel space–time trellis codes. Wireless Personal Communications. doi:10.1007/s11277-013-1293-7.
  30. 30.
    Blanz, J. (2006). Dynamic space–time coding for a communication system. US Patent Publication No. 20060209749, September 21.Google Scholar
  31. 31.
    Jain, D., & Sharma, S. (2013). Adaptive generator sequence selection in multilevel space–time trellis codes. Wireless Personal Communications. doi:10.1007/s11277-013-1440-1.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringThapar UniversityPatialaIndia

Personalised recommendations