Wireless Personal Communications

, Volume 77, Issue 4, pp 2517–2535 | Cite as

Complex Envelope Second-Order Statistics in High-Altitude Platforms Communication Channels

  • Basim Mohammed Eldowek
  • Emmanouel T. Michailidis
  • Yasser A. AlbagoryEmail author
  • Mohamad Abd-Elnaby
  • El-Sayed M. El-Rabaie
  • Moawad I. Dessouky
  • Abdel-Aziz T. Shalaby
  • Bassiouny M. Sallam
  • Fathi E. Abd El-Samie
  • Athanasios G. Kanatas


High-altitude platforms are one of the most promising alternative infrastructures for realizing next generation high data rate wireless networks. This paper presents a three-dimensional (3-D) scattering model for land mobile stratospheric multipath-fading channel with its complex faded envelope. From the scattering model and the complex envelope second-order statistics are derived for a 3-D non-isotropic scattering environment. When we discuss on the second-order statistics we refer to the level crossing rate and the average fade duration, whichare two main parameters in describing the fading severity over time and are very important in assess system characteristics such as hand off, velocities of the transmitter and receiver and fading rate. Numerical calculations have been carried out to demonstrate theoretical derivations and the utility of the proposed model.


High-altitude platforms Mobile communications Second-order statistics Multipath fading 





Azimuth angle of arrival


Azimuth angle of departure


Average fade duration


Cumulative distribution function


Geometry based single bounce


High-altitude platform


Level crossing rate




Multiple-input multiple-output




Probability density function


Power delay profile


Stratospheric base station


Single-input single-output


Terrestrial mobile station


  1. 1.
    Karapantazis, S., & Pavlidou, F. (2005). Broadband communications via high-altitude platforms: A survey. IEEE Communications Society Surveys & Tutorials, 7(1), 2–32.Google Scholar
  2. 2.
    Tozer, T. C., & Grace, D. (2001). High altitude platforms for wireless communications. IEEE Electronics & Communication Engineering Journal, 13(3), 127–7.CrossRefGoogle Scholar
  3. 3.
    Mondin, M., Dovis, F., & Mulassano, P. (2001). On the use of HALE platforms as GSM base stations. IEEE Personal Communications, 8(2), 37–44.CrossRefGoogle Scholar
  4. 4.
    Ahmed, B. T., Ramon, M. C., & Ariet, L. H. (2006). On the UMTS-HSDPA in high altitude platforms (HAPs) communications. In Proceedings of the 3rd ISWCS (pp. 704–708). Valencia, SpainGoogle Scholar
  5. 5.
    (1997) Preferred characteristics of systems in the fixed service using high altitude platforms operating in the bands 47.2-47.5 GHz and 47.9-49.2 GHz. Geneva, Switzerland: International Telecommunication Union, ITU-R resolution 122.Google Scholar
  6. 6.
    (2000). Technical and operational characteristics for the fixed service using high altitude platform stations in the frequency range 18–32 GHz. Geneva, Switzerland: International Telecommunication Union, ITU-R f.[9B/Ka-HAPS].Google Scholar
  7. 7.
    (2005). Air interface for fixed and mobile broadband wireless access systems-amendment for physical and medium access control layers for combined fixed and mobile operation in licensed band. IEEE Std. 802.16e-2005.Google Scholar
  8. 8.
    Khazaei, A. A., & Azmi, P. (2013). A new approach of channel modeling in HAPS based networks and their system performance analysis. Wireless Personal Communications, 70, 69–84.CrossRefGoogle Scholar
  9. 9.
    Michailidis, E. T., & Kanatas, A. G. (2010). Three-dimensional HAP-MIMO channels: Modeling and analysis of space-time correlation. IEEE Transaction on Vehicular Technology, 59(5), 2232–2242.Google Scholar
  10. 10.
    Michailidis, E., Efthymoglou, G., & Kanatas, A. (2008). Spatially correlated3-D HAP-MIMO fading channels. In Proceedings of the IEEE Globecom workshop (pp. 1–7). New Orleans, LA.Google Scholar
  11. 11.
    Zajic, A. G., Stüber, G. L., Pratt, T. G., & Nguyen, S. (2008). Envelope level crossing rate and average fade duration in mobile-to-mobile fading channels. In IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.Google Scholar
  12. 12.
    Maurer, J., Fuügen, T., & Wiesbeck, W., (2002). Narrow-band measurement and analysis of the inter-vehicle transmission channel at 5.2 GHz. In Proceedings of the IEEE VTC (pp. 1274–1278). Birmingham, AL, USA.Google Scholar
  13. 13.
    Pätzold, M., Killat, U., & Laue, F. (1998). An extended Suzuki model for land mobile satellite channels and its statistical properties. IEEE Transactions on Vehicular Technology, 47, 617–30.CrossRefGoogle Scholar
  14. 14.
    Yang, Y., Zong, R., Gao, X., & Cao, J. (2010). Channel modeling for high-altitude platform: A review. International symposium on intelligent signal processing and communication systems (lSPACS 2010) December 6–8, 2010.Google Scholar
  15. 15.
    Cuevas-Ruiz, J. L., & Delgado, J. A. (2004). A statistical switched broadband channel model for HAPs links. In IEEE wireless communications and networking conference, (Vol. 1, pp. 290–294).Google Scholar
  16. 16.
    Cuevas-Ruiz, J. L., & Delgado-Penin, J. A. (2004). Channel model based on semi-Markovian processes an approach for HAPS systems. In The 14th Int’l conference on electronics, communications and computers pp. 52–56.Google Scholar
  17. 17.
    Loo, C. (1985). A statistical model for a land mobile satellite link. IEEE Trans Vehicular Technology, 34, 122–127.CrossRefGoogle Scholar
  18. 18.
    Bo, Z., Qinghua, R., Yunjiang, L., Zhenyong, C., & Feng, Z. (2007). Characteristic and simulation of the near space communication channel, Int’l symposium on microwave antenna, propagation and EMC technologies for wireless communications (pp. 769–773)Google Scholar
  19. 19.
    Ulloa-Vasquez, F., & Delgado-Penin, J. A., (2002). Performance simulation in high altitude platforms (HAPs) communications systems. In Proceedings of data systems in aerospace, pp. 92–9092.Google Scholar
  20. 20.
    Iskandar & Shimamoto, S. (2005). The channel characterization and performance evaluation of mobile communication employing stratospheric platform. IEEE/ACES Int’l conference on wireless communications and applied computational electromagnetic pp. 828–831.Google Scholar
  21. 21.
    Iskandar & Putro, D. R. (2008). Performance evaluation of broadband WiMAX Services over high altitude platforms (HAPs) communication channel. The fourth Int’l conference on wireless and mobile, communications, pp. 55–59.Google Scholar
  22. 22.
    Dovis, F., Fantini, R., Mondin, M., & Savi, P. (2001). 4G communications based on high altitude stratospheric platforms: Channel modeling and performance evaluation. IEEE Global Telecommunications Conference, 1, 557–561.Google Scholar
  23. 23.
    Dovis, F., Fantini, R., Mondin, M., & Savi, P. (2002). Small-scale fading for high-altitude platform (HAP) propagation channels. IEEE Journal on Selected Areas in Communications, 20, 641–7.CrossRefGoogle Scholar
  24. 24.
    Liberti, J. C., & Rappaport, T. S. (1996). A geometrically based model for line-of-sight multipath radio channels. IEEE 46th Vehicular Technology Conference, Vol. 2, pp. 844–848.Google Scholar
  25. 25.
    Cuevas-Ruiz, J. L., Aragon-Zavala, A., Medina-Acosta, G. A., & Delgado-Penin, J. A. (2009). Multipath propagation model for high altitude platform (HAP) based on circular straight cone geometry. Int’l workshop on satellite and space communications, pp. 235–239.Google Scholar
  26. 26.
    Stüber, G. L. (2011). Principle of mobile communication (3rd ed.). Berlin: Springer Science and Business Media.Google Scholar
  27. 27.
    Jakes, W. C. (1994). Microwave mobile communications (2nd ed.). NJ: Wiley-IEEE Press.CrossRefGoogle Scholar
  28. 28.
    Salz, J., & Winters, J. H. (1994). Effect of fading correlation on adaptive arraysin digital mobile radio. IEEE Transactions on Vehicular Technology, 43(4), 1049–1057.CrossRefGoogle Scholar
  29. 29.
    King, P. R., Evans, B. G., & Stavrou, S. (2005). Physical-statistical model for theland mobile-satellite channel applied to satellite/HAP MIMO. In Proceedings of the 11th Euro wireless conference Nicosia, Cyprus, Vol. 1, pp. 198–204.Google Scholar
  30. 30.
    Abdi, A., & Kaveh, M. (2002). A space-time correlation model for multielementantenna systems in mobile fading channels. IEEE Journal on Selected Areas in Communications, 20(3), 550–560.CrossRefGoogle Scholar
  31. 31.
    Mahmoud, S. S., Hussain, Z. M., & O’Shea, P. (2002). Space-time model formobile radio channel withhyperbolicallydistributed scatterers. IEEE Antennas and Wireless Propagation Letters, 1, 211–214.CrossRefGoogle Scholar
  32. 32.
    Mahmoud, S. S., Hussain, Z. M., & O’Shea, P. (2006). A geometrical-basedmicrocell mobile radio channel model. Wireless Network, 12(5), 653–664.CrossRefGoogle Scholar
  33. 33.
    Mahmoud, S. S., Al-Qahtani, F. S., Hussain, Z. M., & Gopalakrishnan, A. (2008). Spatial and temporal statistics for the geometricalbasedhyperbolic macrocell channel model. Digital Signal Processing, 18(2), 151–167.CrossRefGoogle Scholar
  34. 34.
    Vázquez-Castro, M. A., Perez-Fontan, F., & Saunders, S. R. (2002). Shadowingcorrelation assessment and modeling for satellite diversity in urbanenvironments. International Journal of Satellite Communications, 20(2), 151–166.Google Scholar
  35. 35.
    Saunders, S. R., & Evans, B. G. (1996). Physical model of shadowing probabilityfor land mobile satellite propagation. Electronics Letters, 32(17), 1548–1549.CrossRefGoogle Scholar
  36. 36.
    Tzaras, C., Evans, B. G., & Saunders, S. R. (1998). Physical-statistical analysisof land mobile-satellite channel. Electronics Letters, 34(13), 1355–1357.CrossRefGoogle Scholar
  37. 37.
    Proakis, J. (1989). Digital communications (2nd ed.). New York: McGraw-Hill.Google Scholar
  38. 38.
    Michailidis, E. T., Kanatas, A. G. (2011). Capacity analysis and simulation of 3-D space-time correlated HAP-MIMO channels. International Journal on Advances Telecommunications, 4(1 & 2).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Basim Mohammed Eldowek
    • 1
  • Emmanouel T. Michailidis
    • 2
  • Yasser A. Albagory
    • 1
    Email author
  • Mohamad Abd-Elnaby
    • 1
  • El-Sayed M. El-Rabaie
    • 1
  • Moawad I. Dessouky
    • 1
  • Abdel-Aziz T. Shalaby
    • 1
  • Bassiouny M. Sallam
    • 1
  • Fathi E. Abd El-Samie
    • 1
  • Athanasios G. Kanatas
    • 2
  1. 1.Department of Electronics and Communications, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt
  2. 2.Department of Digital Systems, School of Information and Communication TechnologiesUniversity of PiraeusPiraeusGreece

Personalised recommendations