Wireless Personal Communications

, Volume 74, Issue 4, pp 1231–1244 | Cite as

Reducing Energy Consumption by Data Aggregation in M2M Networks



Machine-to-machine (M2M) communications have emerged as a new technology for next-generation communications. As the number of M2M devices and the amount of transmitted data increase, applying data aggregation is an efficient way to improve energy efficiency of M2M networks. In this paper, we devise an analytical model to compute the energy consumption and delivery delay in packet delivery by using data aggregation. Then we develop an extensive simulation to validate our proposed analytical model. Numerical results show that it is essential to smartly configure the parameters for data aggregation in M2M networks. Our study provides guidelines to determine the parameters in terms of the buffering time and the maximum number of buffered packets for data aggregation.


Data aggregation Delivery delay Energy consumption M2M 


  1. 1.
    Almeida, A., & Fonseca, P. (2006). Residential monitoring to decrease energy use and carbon emissions in europe. In International energy efficiency in domestic appliances and lighting conference.Google Scholar
  2. 2.
    Chen, W. E., Lin, Y. B., & Liou, R. H. (2009). A weakly consistent scheme for ims presence service. IEEE Transactions on Wireless Communications, 8(7), 3815–3821.CrossRefGoogle Scholar
  3. 3.
    Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2007). In-network aggregation techniques for wireless sensor networks: A survey. IEEE Wireless Communications, 14(2), 70–87.CrossRefGoogle Scholar
  4. 4.
    Heidemann, J., Silva, F., Intanagonwiwat, C., Govindan, R., Estrin, D., & Ganesan, D. (2001). Building efficient wireless sensor networks with low-level naming. SIGOPS Operating Systems Review, 35(5), 146–159.CrossRefGoogle Scholar
  5. 5.
    Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences.Google Scholar
  6. 6.
    Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRefGoogle Scholar
  7. 7.
    Innovative m2m solutions. (2013). http://www.numerex.com/.
  8. 8.
    Kalpakis, K., Dasgupta, K., & Namjoshi, P. (2002). Maximum lifetime data gathering and aggregation in wireless sensor networks. In Proceedings of the joint international conference on wireless LANs and home networks.Google Scholar
  9. 9.
    Kelly, F. (1979). Reversibility and stochastic networks. New York: Wiley.MATHGoogle Scholar
  10. 10.
    Krishnamachari, B., Estrin, D., & Wicker, S. (2002). Modelling data-centric routing in wireless sensor networks. In Proceedings of IEEE INFOCOM.Google Scholar
  11. 11.
    LTE Release 12. (2013). http://www.3gpp.org/Release-12.
  12. 12.
    Luo, D., Zhu, X., Wu, X., & Chen, G. (2011). Maximizing lifetime for the shortest path aggregation tree in wireless sensor networks. In: Proceedings of IEEE INFOCOM.Google Scholar
  13. 13.
    Madden, S., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2002). Tag: A tiny aggregation service for ad-hoc sensor networks. SIGOPS Operating Systems Review, 36, 131–146.CrossRefGoogle Scholar
  14. 14.
    Mottola, L., & Picco, G. P. (2011). Muster: Adaptive energy-aware multisink routing in wireless sensor networks. IEEE Transactions on Mobile Computing, 10(12), 1694–1709.CrossRefGoogle Scholar
  15. 15.
    Pandey, V., Kaur, A., & Chand, N. (2010). A review on data aggregation techniques in wireless sensor network. Electronic and Electrical Engineering, 1(2), 1–8.Google Scholar
  16. 16.
    Ryberg, T. (2009). The global wireless M2M market. Berg Insight.Google Scholar
  17. 17.
    Smarter planet. (2012). www.ibm.com/smarterplanet/.
  18. 18.
    Solis, I., & Obraczka, K. (2004). The impact of timing in data aggregation for sensor networks. In IEEE international conference on communications.Google Scholar
  19. 19.
    Sou, S. I., & Lin, C. S. (2011). Spr proxy mechanism for 3GPP policy and charging control system. Computer Network, 55(17), 3847–3862.CrossRefGoogle Scholar
  20. 20.
    Tsai, S. Y., Sou, S. I., Tsai, M. H. (2012). Effect of data aggregation in m2m networks. In Proceedings of the 15th international symposium on wireless personal multimedia communications.Google Scholar
  21. 21.
    Wood, A., Virone, G., Doan, T., Cao, Q., Selavo, L., Wu, Y., Fang, L., He, Z., Lin, S., & Stankovic, J. (2006). Alarm-net: Wireless sensor networks for assisted-living and residential monitoring. Technical report.Google Scholar
  22. 22.
    Yao, Y., & Gehrke, J. (2002). The cougar approach to in-network query processing in sensor networks. SIGMOD Record, 31(3), 9–18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Computer and Communication EngineeringNational Cheng Kung UniversityTainan City Taiwan, ROC
  2. 2.Department of Computer Science and Information EngineeringNational Cheng Kung UniversityTainan City Taiwan, ROC

Personalised recommendations