Wireless Personal Communications

, Volume 77, Issue 2, pp 1145–1165 | Cite as

A Key Hiding Communication Scheme for Enhancing the Wireless LAN Security

  • Rajeev SinghEmail author
  • Teek Parval Sharma


Authentication per frame and symmetric key based encryption is an implicit necessity for security in Wireless Local Area Networks (LANs). We propose a novel symmetric key based secure WLAN communication scheme. The scheme provides authentication per frame, generates new secret key for encryption of each frame and involves less message exchanges for maintaining the freshness of key and initial vector (IV). It enhances wireless security by utilizing key hiding concept for sharing the symmetric secret key and IV. The shared secret encryption key and IV are protected using counters and then mixed with each other before sending. We prove security of the scheme in Canetti–Krawczyk model.


Wireless security Authentication Symmetric key encryption SK-secure protocol 


  1. 1.
    Kothmayr, T., Schmitt, C., Hu, W., Brunig, M., & Carle, G. (2013). DTLS based security and two-way authentication for the Internet of things. Ad Hoc Networks, 11, 2710–2723.CrossRefGoogle Scholar
  2. 2.
    Johnson, H., Nilsson, A., Fu, J., Wu, S.F., Chen, A., & Huang, H. (2002). SOLA: A one bit identity authentication protocol for access control in IEEE 802.11. In Proceedings of IEEE global telecommunications conference, GLOBECOM’02 (pp. 768–772).Google Scholar
  3. 3.
    Wu, F., Jonson, H., & Nilson, A. (2004). SOLA: Lightweight security for access control in IEEE 802.11, wireless, security, 10–16 May/June 2004.Google Scholar
  4. 4.
    Wang, H., Velayutham, A., & Guan, Y. (2003). A lightweight authentication protocol for access control in IEEE 802.11. In Proceedings of IEEE global telecommunications conference, GLOBECOM’03 (pp. 1384–1388).Google Scholar
  5. 5.
    Wang, H., Cardo, J., & Guan, Y. (2005). Shepherd: A lightweight statistical authentication protocol for access control in wireless LANs. Computer Communications, 28, 1618–1630.CrossRefGoogle Scholar
  6. 6.
    Ren, K., Lee, H., Park, J., & Kim, K. (2004). An enhanced lightweight authentication protocol for access control in wireless LANs. In Proceedings of 4th international conference on networks, ICON’04 (pp. 444–450). South Korea: Daejeon.Google Scholar
  7. 7.
    Lee, Y.-S., Chien, H.-T., & Tsai, W.-N. (2009). Using random bit authentication to defend IEEE 802.11 DoS attacks. Journal of Information Science and Engineering, 25, 1485–1500.Google Scholar
  8. 8.
    Pepyne, D.L., Ho, Y-C., & Zheng, Q. (2003). SPRiNG: Synchronized random numbers for wireless security. In Proceedings of IEEE wireless communications and networking, WCNC’03 (pp. 2027–2032).Google Scholar
  9. 9.
    Lee, I., & Hunt, R. (2010). A novel design and implementation of dos resistant authentication and seamless handoff scheme for enterprise WLANs. Proceedings of Australian information Sec. Management (pp. 49–61). Perth Western Australia: Edith Cowan University.Google Scholar
  10. 10.
    IEEE 802.11i., (2004). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Medium access Control (MAC) security enhancements, IEEE Standard.Google Scholar
  11. 11.
    Li, X., Bao, F., Li, S., & Ma, J. (2013). FLAP: An efficient WLAN initial access authentication protocol. IEEE Transactions on Parallel and Distributed Systems, 99, 1–11.Google Scholar
  12. 12.
    Singh, R., & Sharma, T. P. (2013). A secure WLAN authentication scheme. IEEK Transaction on Smart Processing and Computing, 2(3), 176–187.Google Scholar
  13. 13.
    Martinovic, I., Zdarsky, F. A., Bachorek, A., & Schmitt, J. B. (2007). Measurement and analysis of handover latencies in IEEE 802.11i secured networks. In Proceedings of the European wireless conference (EW2007), (pp. 1–7). Paris.Google Scholar
  14. 14.
    Martinovic, I., Zdarsky, F. A., Bachorek, A., & Schmitt, J. B. (2006). Introduction of IEEE 802.11i and measuring its Sec. vs. performance tradeoff. Technical Report 351/06. University of Kaiserslautern, Germany.Google Scholar
  15. 15.
    Martinovic, I., Zdarsky, F. A., & Schmitt, J. B. (2006). On the way to IEEE 802.11 DoS Resilience. In Proceedings of IFIP NETWORKING, workshop on security and privacy in mobile and wireless networking, Coimbra, Portugal, Springer LNCS.Google Scholar
  16. 16.
    He, C., & Mitchell, J. C. (October 2004). Analysis of the 802.11i 4-way handshake. In ACM workshop on wireless, security, (WiSe’04) (pp. 43–50).Google Scholar
  17. 17.
    He, C., & Mitchell, J. C. (2005). Security analysis and improvements for IEEE 802.11i. In Proceedings of the annual network and distributed system security symposium (NDSS’05) (pp. 90–110).Google Scholar
  18. 18.
    Park, C. S. (2010). Two-way handshake protocol for improved security in IEEE 802.11 wireless LANs. Computer Communications, 33(9), 1133–1140.CrossRefGoogle Scholar
  19. 19.
    Rango, F. D., Lentini, D. C., & Marano, S. (2006). Static and dynamic 4-way handshake solutions to avoid denial of service attack in Wi-Fi protected access and IEEE 802.11i. Journal on Wireless Communication and Network, 2006, 1–19.CrossRefGoogle Scholar
  20. 20.
    Wang, L., & Srinivasan, B. (2010). Analysis and improvements over DoS attacks against IEEE 802.11i standard. In IEEE international conference on network security, wireless communications and trusted computing (pp. 109–113). China.Google Scholar
  21. 21.
    Martinovic, I., Pichota, P., Wilhelm, M., Zdarsky, F. A., & Schmitt, J. B. (2008). Design, implementation, and performance analysis of discosec: service pack for securing WLANs. In WOWMOM (pp. 1–10).Google Scholar
  22. 22.
    Arbaugh, W. A., Shankar, N., Wang, J., & Zhang, K. (2002). Your 802.11 network has no clothes. IEEE Wireless Communication Magazine, 9, 44–51.CrossRefGoogle Scholar
  23. 23.
    Bittau, A., Handley, M., & Lackey, J. (2006). The final nail in WEP’s coffin. In Proceedings of the IEEE symposium on security and privacy, (S &P’ 06) (pp. 386–400).Google Scholar
  24. 24.
    Tews, E., Weinmann, R., & Pyshkin A. (2007). Breaking 104 bit WEP in less than 60 seconds. In Proceedings of international conference on information security applications, WISA (pp. 188–202).Google Scholar
  25. 25.
    Holt, A., & Huang, C. Y. (2010). 802.11 Wireless networks: Security and analysis. Berlin: Springer.CrossRefGoogle Scholar
  26. 26.
    Helena, R.-P., & Jordi, H.-J. (2011). Computational and energy costs of cryptographic algorithms on handheld devices. Journal Future Internet, 3, 31–48.CrossRefGoogle Scholar
  27. 27.
    Komarova, M., Riguidel, M., & Hecker, A. (2007). Fast re-authentication protocol for inter-domain roaming. In Annual IEEE international symposium on personal, indoor and mobile radio communication (PIMRC’07), Athens, Greece.Google Scholar
  28. 28.
    Bellare, M., Canetti, R., & Krawczyk, H. (1998). A modular approach to design and analysis of authentication and key exchange protocols. In Proceedings of the thirtieth annual ACM symposium on theory of computing, STOC ’98 (pp. 419–428).Google Scholar
  29. 29.
    Canetti, R., & Krawczyk, H. (2001). Analysis of key-exchange protocols and their use for buliding secure channels. In B. Pfitzmann (Ed.), Advances in cryptology-eurocrypt (pp. 453–474). Berlin: Springer.Google Scholar
  30. 30.
    Canetti, R., & Krawczyk, H. (2001). Analysis of key-exchange protocols and their use for buliding secure channels (Full version).

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.G.B.Pant UniversityPantnagarIndia
  2. 2.National Institute of TechnologyHamirpurIndia

Personalised recommendations