Wireless Personal Communications

, Volume 77, Issue 1, pp 719–748 | Cite as

Cooperative Impulse Radio Ultra-Wideband Communication Using Coherent and Non-Coherent Detectors: A Review

Article

Abstract

Ultra-wideband (UWB) is a booming technology in the field of wireless communication. This paper presents a brief idea related to the various coherent and non-coherent IR-UWB detectors. Due to the limitation in transmit power spectral density of UWB system, the major challenges faced by UWB system includes, achieving Quality of Service, system performance and coverage area. So, the combination of UWB system with cooperative communication will not only improve the system performance, but also help in expanding coverage area of signals. A brief review of the work done by various researchers in the field of cooperative impulse radio (IR) UWB communication is also presented in this paper. The working principle and performance analysis of the various coherent and non-coherent IR-UWB detectors using cooperative relay strategies are also discussed at large in this paper. The various fixed cooperative relay strategies used for cooperative UWB communication is Amplify and Forward, Decode and Forward and Detect and Forward. From the simulation results it can be inferred that, even though IR-UWB DTR receiver gives a much better BER performance than IR-UWB ED receiver using both cooperative and non-cooperative strategies, yet ED receiver is preferred because of its less complexity and low power consumption. Future prospects in the field of cooperative IR-UWB communication have also been discussed in this paper.

Keywords

Cooperative IR-UWB communication Coherent UWB RAKE receivers Non-coherent UWB receivers Cooperative IR-UWB receivers Cooperative relaying 

Abbreviations

AC

Autocorrelation

AF

Amplify and forward

ARAKE

All RAKE

ATR

Average transmitted reference

BC

Broadcast

BEP

Bit error probability

BER

Bit error rate

BPF

Bandpass filter

CF

Characteristic function

CIR

Channel impulse response

CSI

Channel state information

DF

Decode and forward

DS

Direct sequence

DTF

Detect and forward

DTR

Differential transmitted reference

ED

Energy detector

EGC

Equal gain combining

FCC

Federal communications commission

FDD

Frequency division duplex

FR

Fixed relaying

GLRT

Generalized likelihood ratio test

IR

Impulse radio

LOS

Line of sight

MA

Multiple access

MD

Multiple-differential

MF

Matched filter

MGF

Moment generating function

MinMax-RS

Minimax relay selection

MMSE

Minimum mean square estimation

MP-RS

Maximum product relay section

MRC

Maximal ratio combining

MUD

Multi-user detector

MUI

Multi-user interference

NB

Narrowband

NC

Network coding

NCBC

Network coded broadcasting

NLOS

Non line of sight

OOK

On-off keying

PAM

Pulse amplitude modulation

PDP

Power delay profile

PDR

Packet delivery ratio

PNC

Physical network coding

PPM

Pulse position modulation

PRAKE

Partial combining RAKE

PSD

Power spectral density

QoS

Quality of service

RC

Relay combining

SC

Selection combining

SOVA

Soft output viterbi decoding algorithm

SR

Selective relaying

SRAKE

Selective combining RAKE

SUD

Single user detector

S–V

Saleh–Venezuela

TDD

Time division duplex

TDMA

Time division multiple access

TH

Time hop

TR

Transmitted reference

TRPC

Transmitted reference pulse cluster

UCoRS

UWB based cooperative retransmission scheme

UWB

Ultra-wideband

WED

Weighted energy detector

References

  1. 1.
    Win, M. Z., & Scholtz, R. A. (1998). Impulse radio: How it works. IEEE Communication Letters, 2(2), 36–38. doi:10.1109/4234.660796.CrossRefGoogle Scholar
  2. 2.
    Federal Communications Commission (FCC), Revision of part 15 of the commission’s rules against regarding Ultra-Wideband Transmission Systems. First Report and Order, ET Docket 98-153, FCC 02-48, Adopted: Feb 2002, Release Apr 2002. http://www.ntia.doc.gov/fcc-filing/2000/ntia-comments-revision-part-15-commissions-regarding-ultrawideband-transmission-syst.
  3. 3.
    Porcino, D., & Hirt, W. (2003). Ultra-wideband radio technology: Potential and challenges ahead. IEEE Communications Magazine, 41(7), 66–74. doi:10.1109/MCOM.2003.1215641.CrossRefGoogle Scholar
  4. 4.
    Aiello, G. R., & Rogerson, G. D. (2003). Ultra-wideband wireless systems. IEEE Microwave Magazine, 4(2), 36–47. doi:10.1109/MMW.2003.1201597.CrossRefGoogle Scholar
  5. 5.
    Wentzloff, D. D., Blazquez, R., Lee, F. S., Ginsburg, P., Powell, J., & Chandrakeshan, A. P. (2005). System design considerations for ultra-wideband communication. IEEE Communications Magazine, 43(8), 114–121. doi:10.1109/APS.2003.1217587.CrossRefGoogle Scholar
  6. 6.
    Mohammad, S., & Sadough, S. (2009). A tutorial on ultra wideband modulation and detection schemes. http://www.faculties.sbu.ac.in/sadough/pdf/uwb_tutorial.pdf. Accessed Apr 2009.
  7. 7.
    Fernandes, J. R., & Wentzloff, D. (2010). Recent advances in IR-UWB transceivers: An overview. In Proceedings of IEEE international symposium on circuits and systems (ISCAS) (pp. 3284–3287). doi:10.1109/ISCAS.2010.5537916.
  8. 8.
    Siriwongpairat, W. P., Su, W., Han, Z., & Liu, K.-J.-R. (2006). Employing cooperative diversity for performance enhancement in UWB communication systems. In Proceedings IEEE wireless communication and networking conference (WCNC), vol. 4 (pp. 1854–1859). doi:10.1109/WCNC.2006.1696578.
  9. 9.
    Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080. doi:10.1109/TIT.2004.838089.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Laneman, J. N. (2002). Cooperative diversity in wireless networks: Algorithm and architectures. Ph.D dissertation, MIT, Cambridge, MA, 2002. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.305&rep=rep1&type=pdf.
  11. 11.
    Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity-part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938. doi:10.1109/TCOMM.2003.818096.CrossRefGoogle Scholar
  12. 12.
    Jamshidi, A., & Nasiri-Kenari, M. (2008). Performance analysis of transmitter-side cooperation-receiver-side-relaying schemes for heterogeneous sensor networks. IEEE Transactions on Vehicular Technology, 57(3), 1548–1563. doi:10.1109/TVT.2007.909299.CrossRefGoogle Scholar
  13. 13.
    Van Der Meulen, E. C. (1971). Three-terminal communication channels. Advances in Applied Probability, 3(1), 120–154.Google Scholar
  14. 14.
    Cover, T. M., & El Gamal, A. A. (1979). Capacity theorems for the relay channel. IEEE Transactions on Information Theory, 25(5), 572–584. doi:10.1109/TIT.1979.1056084.CrossRefMATHGoogle Scholar
  15. 15.
    Katiyar, H., Rastogi, A., & Agarwal, R. (2011). Cooperative communication: A review. IETE Technical Review, 28(5), 409–417. doi:10.4103/0256-4602.85974.CrossRefGoogle Scholar
  16. 16.
    Khan, M. G., Nordberg, J., & Claesson, I. (2008). Performance evaluation of RAKE receiver for low data rate UWB systems using multipath channels for industrial environments. Research Report, Blekinge Institute of Technology. http://www.bth.se/fou/forskinfo.nsf/0/ee5efbf0dad21be4c125746d004ee979/file/UWBResearchReport1_MGK.pdf.
  17. 17.
    Win, M. Z., & Scholtz, R. A. (2002). Characterizati on of ultra-wide bandwidth wireless indoor channels: A communication-theoretic view. IEEE Journal on Selected Areas in Communication, 20(9), 1613–1627. doi:10.1109/JSAC.2002.805031.CrossRefGoogle Scholar
  18. 18.
    Cassioli, D., Win, M. Z., Vatalaro, F., & Molisch, A. F. (2002). Performance of low- complexity RAKE reception in a realistic UWB channel. Proceedings of IEEE International Conference on Communications, ICC, 2(2), 763–767. doi:10.1109/ICC.2002.996958.
  19. 19.
    Amico, A. A. D., Mengali, U., & Taponecco, L. (2004). Performance comparisons between two signaling formats for UWB communications. In Proceedings of IEEE international conference on communications, ICC, vol. 6 (pp. 3404–3408). doi:10.1109/ICC.2004.1313176.
  20. 20.
    Romme, J., & Witrisal, K. (2006). Transmitted-reference UWB systems using weighted autocorrelation receivers. IEEE Transactions on Microwave Theory and Technology, 54(4), 1754–1761. doi:10.1109/TMTT.2006.872061.CrossRefGoogle Scholar
  21. 21.
    Luo, X., & Gian nakis, G. B. (2006). Achievable rates of transmitted-reference ultra-wideband radio With PPM. IEEE Transactions on Communications, 54(9), 1536–1541. doi:10.1109/TCOMM.2006.881203.CrossRefGoogle Scholar
  22. 22.
    Amico, A. A. D., & Mengali, U. (2005). GLRT receivers for UWB systems. IEEE Communications Letters. doi:10.1109/LCOMM.2005.06032.
  23. 23.
    Chan, Y.-L., & Scholtz, R. A. (2003). Optimal and suboptimal receivers for ultra-wideband transmitted reference systems. In Proceedings Of global telecommunications conference, Globecom, vol. 2 (pp. 759–763). doi:10.1109/GLOCOM.2003.1258340.
  24. 24.
    Franz, S., & Mitra, U. (2003). On optimal data detection for UWB transmitted reference systems. In Proceedings of IEEE global telecommunications conference, Globecom, vol. 2 (pp. 744–748). doi:10.1109/GLOCOM.2003.1258337.
  25. 25.
    He, S., & Dong, X. (2010). Implementation of a low complexity UWB transmitted reference pulse cluster system. In Proceedings of 2010 IEEE 72nd vehicular technology conference, (VTC Fall) (pp. 1–5). doi:10.1109/VETECF.2010.5594332.
  26. 26.
    El Abri, K. B. H., & Bouallegue, A. (2012). A new UWB system based on a frequency domain transformation of the received signal. International Journal of Wireless and Mobile Networks (IJWMN), 4(2), 175–179.CrossRefGoogle Scholar
  27. 27.
    Amico, A. A. D., & Taponecco, L. (2006). A differential receiver for UWB systems. IEEE Transactions on Wireless Communications, 5(7), 1601–1605. doi:10.1109/TWC.2006.1673067.CrossRefGoogle Scholar
  28. 28.
    Khani, H., & Azmi, K. (2008). Performance analysis of a high data rate UWB DTR system in dense multipath channels. Progress in Electromagnetics Research B, 5, 119–131.CrossRefGoogle Scholar
  29. 29.
    Sahin, M. E., Guvenc, I., & Arslan, H. (2005). Optimization of energy detector receivers for UWB systems. In Proceedings of 2005 IEEE 61st vehicular technology conference (VTC Spring), vol. 2 (pp. 1386–1390). doi:10.1109/VETECS.2005.1543536.
  30. 30.
    Jianjun, Wu, Qinglin, L., & Hiage, X. (2008). Analysis of weighted non-coherent receiver for UWB-OOK signal in multipath channels. Journal of Electronics (China), 25(1), 32–38.CrossRefGoogle Scholar
  31. 31.
    Wang, F., Tian, Z., & Sandler, B. M. (2011). Weighted energy detection for noncoherent ultra-wideband receiver design. IEEE Transactions on Wireless Communications, 10(2), 710–720. doi:10.1109/TWC.2010.120310.101390.CrossRefGoogle Scholar
  32. 32.
    Ji, S. A., Lee, S. J., & Kim, J. S. (2012). Simplified structure of weighted energy detector for UWB-IR systems. IEEE Electronic Letters, 48(1), 48–50. doi:10.1049/el2011.2755.CrossRefGoogle Scholar
  33. 33.
    Jianjun, Wu, Qinglin, L., & Hiage, X. (2006). Weighted noncoherent receivers for UWB PPM signals. IEEE Communications Letters, 10(9), 655–657. doi:10.1109/LCOMM.2006.1714535.CrossRefGoogle Scholar
  34. 34.
    Qing-Hua, S., Xuan-li, X., Di, L., & Xin, Q. (2010). Performance analysis of cooperative ultra-wideband communication system. In Proceedings of 2010 IEEE international conference on communications and mobile computing (CMC), vol. 2 (pp. 217–220). doi:10.1109/CMC.2010.249.
  35. 35.
    Lee, Y., & Tsai, M.-H. (2009). Performance of decode-and-forward cooperative communications over Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 58(3), 1218–1228. doi:10.1109/TVT.2008.928907.CrossRefGoogle Scholar
  36. 36.
    Bai, Z., & Xu, Y. (2012). MGF based performance analysis of dual-hop regenerative relaying IR-UWB systems. International Journal of Electronics and Communication (AEU), Elsevier, 66(8), 641–646. doi:10.1016/j.aeue.2011.12.003.
  37. 37.
    Yuan, J., Li, Y., & Chu, L. (2010). Differential modulation and relay selection with detect-and-forward cooperative relaying. IEEE Transactions on Vehicular Technology, 59(1), 261–268. doi:10.1109/TVT.2009.2031802.CrossRefGoogle Scholar
  38. 38.
    Aziz, A. A., Iwanami, Y., & Okamato, E. (2009). Efficient combining technique with a low complexity detect-and-forward relay for cooperative diversity scheme. In Proceedings of IEEE region 10 conference. TENCON, vol. 9 (pp. 1–6). doi:10.1109/TENCON.2009.5396130.
  39. 39.
    Maichalernnukul, K., Kaiser, T., & Zheng, F. (2009). On the performance of coherent and noncoherent UWB detection systems using a relay with multiple antennas. IEEE Transactions on Wireless Communications, 8(7), 3407–3414. doi:10.1109/TWC.2009.080830.CrossRefGoogle Scholar
  40. 40.
    Saleh, A. A. M., & Venezuela, R. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, 5(2), 128–137. doi:10.1109/JSAC.1987.1146527.CrossRefGoogle Scholar
  41. 41.
    Maichalernnukul, K., Kaiser, T., & Feng, Z. (2009). Performance investigation of a UWB relay system using multiple relays with multiple antennas in IEEE 802.15.3a channel. In Proceedings of IEEE 69th vehicular technology conference, VTC, Spring (pp. 1–6). doi:10.1109/VETECS.2009.5073792.
  42. 42.
    Shirazi, G. N., Kong, P. Y., & Tham, C. K. (2008). A low-overhead cooperative retransmission scheme for IR-UWB networks. Research Letters in Communication. doi:10.1109/ICUWB.2008.4653387.
  43. 43.
    Shirazi, G. N., Kong, P. Y., & Tham, C. K. (2010). Optimal cooperative relaying schemes in IR-UWB networks. IEEE Transactions on Mobile Computing, 9(7), 969–981. doi:10.1109/TMC.2010.43.CrossRefGoogle Scholar
  44. 44.
    Abou-Rjeily, C. (2013). A symbol-by-symbol cooperative diversity scheme for relay-assisted UWB communications with PPM. IEEE Journal on Selected Areas in Communication, 31(8), 1436–1445. doi:10.1109/JSAC.2013.130808.CrossRefGoogle Scholar
  45. 45.
    Abou-Rjeily, C., Daniele, N., & Belfiore, J. C. (2006). On the decode-and-forward cooperative diversity with coherent and non-coherent UWB systems. In Proceedings of IEEE 2006 international conference on ultra-wideband (pp. 435–440). doi:10.1109/ICU.2006.281589
  46. 46.
    Zeinalpour-Yazdi, Z., Nasiri-Kenari, M., & Aazhang, B. (2012). Performance of UWB linked relay network with time-reversed transmission in the presence of channel estimation error. IEEE Transactions on Wireless Communications, 11(8), 2958–2969. doi:10.1109/TWC.2012.061912.111866.Google Scholar
  47. 47.
    Bai, Z., Xu, Y., Shen, B., Kwak, K. S. & Yuan, D. (2011). Performance analysis of dual-hop UWB system with non-regenerative relaying scheme. In Proceedings of 13th IEEE international conference on advanced communication technology (ICACT) (pp. 1221–1225).Google Scholar
  48. 48.
    Xu, Y., Bai, Z., & Kwak, K. S. (2011). On the performance of dual-hop regenerative cooperative relaying of IR-UWB System. In Proceedings of 11th IEEE international symposium on communications and information technologies (ISCIT) (pp. 323–327). doi:10.1109/ISCIT.2011.6089758.
  49. 49.
    Xu, Y., Bai, Z., Yang, X., Wang, A. L., & Kwak, K. (2011). Closed-form BER analysis of dual-hop non-regenerative IR-UWB system over multipath channels. In Proceedings of 2011 IEEE 13th international conference on communication technology (ICCT) (pp. 126–130). doi:10.1109/ICCT.2011.6157847.
  50. 50.
    Zeinalpour Yazdi, Z., & Nasiri Kenari, M. (2010). Bit error probability analysis of UWB communications with a relay node. IEEE Transactions on Wireless Communications, 9(2), 802–813. doi:10.1109/TWC.2010.02.090383.CrossRefGoogle Scholar
  51. 51.
    Maichalernnukul, K., Feng, Z., & Kaiser, T. (2010). Dual-hop UWB transmissions using a multiple antenna relay with antenna selection versus single-antenna relay selection. In Proceedings of 2010 IEEE international ITG conference on source and channel coding (SCC) (pp. 1–6).Google Scholar
  52. 52.
    Yang, Y., Wang, D., Li, M., & Song, Y. (2010). A relay selection scheme for IR-UWB networks based on distance information. In Proceedings of 2010 IEEE international conference on information theory and information security (ICITIS) (pp. 1046–1049). doi:10.1109/ICITIS.2010.5689728.
  53. 53.
    Pan, G., Ekici, E., & Feng, Q. (2012). Performance analysis of cooperative time hopping UWB systems with multi-user interference. IEEE Transactions on Wireless Communications, 11(6), 1969–1975. doi:10.1109/TWC.2012.040412.102318.CrossRefGoogle Scholar
  54. 54.
    Maichalernnukul, K., Kaiser, T., & Feng, Z. (2011). Performance of ultrawideband cooperative relay systems in the presence of narrowband interference. In Proceedings of 2011 IEEE international conference on ultra-wideband (ICUWB) (pp. 405–409). doi:10.1109/ICUWB.2011.6058874
  55. 55.
    Feng, W., Chengqi, X., & Yan, Z. (2009). The TR-UWB receiver based on spatial diversity. Journal of Electronics (China), 26(5), 623–630.CrossRefGoogle Scholar
  56. 56.
    Dong, X., & Dong, X. (2010). Bi-directional cooperative relays for transmitted reference pulse cluster UWB systems. In Proceedings of 2010 IEEE global telecommunications conference. Globecom (pp. 1–5). doi:10.1109/GLOCOM.2010.5683989.
  57. 57.
    Gao, H., Su, X., Lv, T., Wang, T., & Wang, Z. (2011). Physical-layer network coding aided two way relay for transmitted-reference UWB networks. In Proceedings of 2011 IEEE global telecommunications conference, Globecom (pp. 1-6). doi:10.1109/GLOCOM.2011.6133672.
  58. 58.
    Mondelli, M., Zhou, Q., Ma, X., & Lottici, V. (2012). A cooperative approach for amplify- and-forward differential transmitted reference IR-UWB relay systems. In Proceedings of 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2905–2908). doi:10.1109/ICASSP.2012.6288524.
  59. 59.
    Wu, T. M., & Hou, Y. F. (2011). Performance analysis of cooperative communication in the UWB differential transmitted reference system. In Proceedings of 2011 IEEE 73rd vehicular technology conference (VTC Spring) (pp. 1–5). doi:10.1109/VETECS.2011.5956239.
  60. 60.
    Hamdi, M., Mietzner, J., & Schober, R. (2010). Double-differential encoding for dual-hop amplify-and-forward relaying in IR UWB systems. In Proceedings of 2010 IEEE 71st vehicular technology conference (VTC Spring) (pp. 1–5). doi:10.1109/VETECS.2010.5493862
  61. 61.
    Hamdi, M., Mietzner, J., & Schober, R. (2011). Multiple-differential encoding for multi-hop amplify-and-forward relaying in IR-UWB systems. IEEE Transactions on Wireless Communications, 10(8), 2577–2591. doi:10.1109/TWC.2011.060811.100582.CrossRefGoogle Scholar
  62. 62.
    Wang, Z., Lv, T., Gao, H., & Li, Y. (2011). A novel two-way relay UWB network with joint non-coherent detection in multipath. In Proceedings of 2011 IEEE 73rd vehicular technology conference (VTC Spring) (pp. 1–5). doi:10.1109/VETECS.2011.5956243.
  63. 63.
    Wu, T. S., & Hou, Y. F. (2012). Noncoherent UWB with block coded modulation in cooperative communications systems. In Proceedings of 2012 IEEE 16th international symposium on consumer electronics (ISCE) (pp. 1–4). doi:10.1109/ISCE.2012.6241751.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringIndian Institute of Technology RoorkeeRoorkee India

Personalised recommendations