Advertisement

Wireless Personal Communications

, Volume 75, Issue 4, pp 1851–1862 | Cite as

Adaptive Generator Sequence Selection in Multilevel Space–Time Trellis Codes

  • Dharmvir Jain
  • Sanjay Sharma
Article

Abstract

It has been shown that multilevel space–time trellis codes (MLSTTCs) designed by combining multilevel coding (MLC) with space–time trellis codes (STTCs) can provide improvement in diversity gain and coding gain of the STTCs. MLSTTCs assume perfect channel state information (CSI) at receiver and no knowledge of CSI at transmitter. Weighted multilevel space–time trellis codes (WMLSTTCs), designed by combining MLSTTCs and perfect CSI at transmitter are capable of providing improvement in coding gain of MLSTTCs. In this paper, we present improvement in performance of MLSTTCs by using channel feedback information from the receiver for adaptive selection of generator sequences. The selected generator sequences are used for encoding the component STTCs. The receiver compares current channel profile at receiver with a set of predetermined channel profiles, and sends an index of a predefined channel profile closest to the current channel profile to the transmitter. The transmitter selects a code set that matches best with the current channel profile at receiver using the index. The selected code set having different sets of generator sequences is used by STTC encoders to generate dynamic space–time trellis codes (DSTTCs). The DSTTCs act as component codes in multilevel coding for generating new codes henceforth referred to as multilevel dynamic space–time trellis codes (MLDSTTCs). Analysis and simulation results show that MLDSTTCs provide improvement in performance over MLSTTCs.

Keywords

Multilevel coding Space–time trellis code Channel state information Rayleigh fading channel Adaptive generator sequences selection 

References

  1. 1.
    Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Hammons, A. R., & Gammal, H. E. (2000). On the theory of space time codes for PSK modulation. IEEE Transactions on Information Theory, 46(2), 524–542.CrossRefMATHGoogle Scholar
  3. 3.
    El Gamal, H., & Hammons, A. R., Jr. (2001). Algebraic space time codes for block fading channel. IEEE International Symposium on Information Theory, 152.Google Scholar
  4. 4.
    Li, Y., & Vucetic, B. (2005). Combined space time trellis codes and beamforming on fast fading channels. Vehicular Technology Conference, 2, 1181–1185.Google Scholar
  5. 5.
    Zhou, S., & Giannakis, G. (2002). Optimal transmitter eigen-beamforming and space–time block coding based on channel mean feedback. IEEE Transactions on Signal Processing, 50, 2599–2613.CrossRefGoogle Scholar
  6. 6.
    Liu, J., & Jafarkhani, H. (2003). Combining beam forming and quasi-orthogonal space–time block coding using channel mean feedback. Proceeding in IEEE Global Telecommunications Conference (GLOBECOM), 4, 1925–1930.Google Scholar
  7. 7.
    Zhou, S., & Giannakis, G. (2003). Optimal transmitter eigen-beam forming and space–time block coding based on channel correlations. IEEE Transactions on Information Theory, 49, 1673–1690.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Jongren, G., Skoglund, M., & Ottersten, B. (2002). Combining beam forming and orthogonal space–time block coding. IEEE Transactions on Information Theory, 48, 611–627.CrossRefGoogle Scholar
  9. 9.
    Li, Y., Vucetic, B., Santoso, A., & Chen, Z. (2003). Space time trellis codes with adaptive weighting. Electronics Letters, 39, 1833–1834.CrossRefGoogle Scholar
  10. 10.
    Liu, L., & Jafarkhani, H. (2006). Space–time trellis codes based on channel-phase feedback. IEEE Transactions on communications, 54(12), 2186–2198.CrossRefGoogle Scholar
  11. 11.
    Dimas, M. T., & Torres, R. P. (2008). Space–time code selection for transmit antenna diversity systems. IEEE Transactions on Vehicular Technology, 57(1), 620–629.CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Imai, H., & Hirakawa, S. (1977). A new multilevel coding method using error correcting codes. IEEE Transactions on Information Theory, 23(3), 371–377.CrossRefMATHGoogle Scholar
  14. 14.
    Calderbank, A. (1989). Multilevel codes and multistage decoding. IEEE Transactions on Communications, 37(3), 222–229.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Ma, Shang-Chih, & Lin, Chia-Hao. (2010). Multilevel concatenated space–time block codes. IEICE Transactions on Fundamentals of Electronics, Communications and, Computer, E93–A(10), 1845–1847.CrossRefGoogle Scholar
  16. 16.
    Baghaie, A. M. (2008). Multilevel space-time trellis codes for Rayleigh fading channels. ME Thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/bitstream/10092/2101/1/Thesis_fulltext.pdf. Accessed March 15, 2010.
  17. 17.
    Baghaie, A. M., Martin, P. A., & Taylor, D. P. (2010). Grouped multilevel space–time trellis codes. IEEE Communications Letters, 14(3), 232–234.Google Scholar
  18. 18.
    Sharma, S. (2012). A novel weighted multilevel space–time trellis coding scheme. Computers & Mathematics with Applications, 63(1), 280–287.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Khaled, F. (1993). Combined multilevel coding and multiresolution modulation. IEEE International Conference on Technical Program, 2, 1081–1085.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringThapar UniversityPatialaIndia

Personalised recommendations