Wireless Personal Communications

, Volume 75, Issue 1, pp 103–118 | Cite as

PAPR Reduction in OFDM Systems: Polynomial-Based Compressing and Iterative Expanding

  • Mohammad Javad OmidiEmail author
  • Arin Minasian
  • Hamid Saeedi-Sourck
  • Keyvan Kasiri
  • Iraj Hosseini


In this paper a companding-based scheme is proposed to reduce the Peak-to-average power ratio (PAPR) of an orthogonal frequency division multiplexing system. At the transmitter side, a compressing polynomial function is appended to the inverse discrete Fourier transform block; and at the receiver the transmitted signal is retrieved iteratively through combining the discrete Fourier transform block with a reverse expanding function. In the iterative algorithm the Jacobi’s method is used for solving the equations. Also, the general form of the compressing polynomial functions is attained through the use of Daubechies wavelet functions. As an advantage, the proposed method involves less complexity at the transmitter compared to other PAPR reduction methods. Furthermore, it requires less increasing to signal-to-noise ratio for the same bit error rate in comparison with other companding methods. The order of compressing polynomial and the number of iterations for the proposed algorithm at the receiver can be set in accordance with the performance-complexity trade off.


OFDM PAPR Companding method Expanding Daubechies wavelet 


  1. 1.
    Wu, Y., & Zou, W. Y. (1999). Orthogonal frequency division multiplexing: A multi-carrier modulation scheme. IEEE Transaction on Consumer Electronics, 41(3), 392–399.Google Scholar
  2. 2.
    Jiang, T., & Wu, Y. (2008). An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Transaction on Broadcasting, 54(2), 257–268.CrossRefGoogle Scholar
  3. 3.
    Conti, A., Dardari, D., & Tralli, V. (2000). On the performance of CDMA systems with nonlinear amplifier and AWGN. In Proceeding of 6th IEEE international symposium on spread spectrum techniques and applications (pp. 197–202). New Jersey, USA.Google Scholar
  4. 4.
    Jones, A. E., Wilkinson, T. A., & Barton, S. (1994). Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission schemes. IEE Electronics Letters, 30(25), 2098–2099.CrossRefGoogle Scholar
  5. 5.
    Jiang, T., & Zhu, G. (2005). Complement block coding for reduction in peak-to-average power ratio of OFDM signals. IEEE Communications Magazine, 43(9), S17–S22.CrossRefGoogle Scholar
  6. 6.
    van Nee, R. D. J. (1996). OFDM codes for peak-to-average power reduction and error correction. Global Telecommunications Conference, pp. 740–744.Google Scholar
  7. 7.
    Cimini, L. J, Jr, & Sollenberger, N. R. (2000). Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences. IEEE Communication Letters, 4(3), 86–88.CrossRefGoogle Scholar
  8. 8.
    Muller, S. H., & Hüber, J. B. (1997). OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences. IEE Electronic Letter, 33(5), 368–369.CrossRefGoogle Scholar
  9. 9.
    Ho, W. S., Madhukumar, W. S., & Chin, F. (2003). Peak-to-average power reduction using partial transmit sequences: A suboptimal approach based on dual layered phase sequencing. IEEE Transaction on Broadcasting, 49(2), 225–231.CrossRefGoogle Scholar
  10. 10.
    Kang, S. G., Kim, J. G., & Joo, E. K. (1999). A novel subblock partition scheme for partial transmit sequence OFDM. IEEE Transaction on Broadcasting, 45(3), 333–338.CrossRefGoogle Scholar
  11. 11.
    Kwon, O. J., & Ha, Y. H. (2003). Multi-carrier PAP reduction method using sub-optimal PTS with threshold. IEEE Transaction on Broadcasting, 49(2), 232–236.CrossRefGoogle Scholar
  12. 12.
    Breiling, M., Muller-Weinfurtner, S. H., & Huber, J. B. (2003). SLM peak-power reduction without explicit side information. IEEE Communalization Letters, 5(6), 239–241.CrossRefGoogle Scholar
  13. 13.
    Bami, R. W., Fischer, R. F. H., & Hüber, J. B. (1996). Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping. IEE Electronic Letter, 32(22), 2056–2057.CrossRefGoogle Scholar
  14. 14.
    Han, S. H., & Lee, J. H. (2004). Modified selected mapping technique for PAPR reduction of coded OFDM signal. IEEE Transaction on Broadcasting, 50(3), 335–341.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Lim, D. W., Heo, S. J., & No, J. S. (2009). An overview of peak-to-average power ratio reduction schemes for OFDM signals. Journal of Communications and Networks, 11(3), 229–239.CrossRefGoogle Scholar
  16. 16.
    Tellado, J. (2000). Multicarrier modulation with low PAPR: Applications to DSL and wireless. Berlin: Kluwer.Google Scholar
  17. 17.
    Tellado, J., & Ciofi, J. M. (1998). PAPR reduction with minimal or zero bandwidth loss and low complexity. ANSI document, T1E1.4, pp. 98–173.Google Scholar
  18. 18.
    Gatherer, A., & Polley, M. (1997). Controlling clipping probability in DMT transmission. Proceeding of IEEE Asilomar conference, 1, 578–584.Google Scholar
  19. 19.
    Petersson, N., Johansson, A., Odling, P., & Börjesson, P. O. (2001). Analysis of tone selection for PAPR reduction. In Proceeding international conference on information, communications and signal processing, Singapore.Google Scholar
  20. 20.
    Borjesson, P. O., Feichtinger, H. G., Grip, N., Isaksson M., Kaiblinger, N., Odling, P., & Persson, L. E. (1999). A low-complexity PAPR-reduction method for DMT-VDSL. In Proceeding of the 5th international symposium on digital signal processing for communication systems, Australia, pp. 164–199.Google Scholar
  21. 21.
    Jones, D. L. (1999). Peak power reduction in OFDM and DMT via active channel modification. In Proceeding of IEEE Asilomar conference on signals, systems, and computers, pp. 1076–1079.Google Scholar
  22. 22.
    Krongold, B. S., & Jones, D. L. (2002). A study of active constellation extension for PAPR reduction in OFDM. In Proceeding international OFDM workshop, pp. 107–111, Germany.Google Scholar
  23. 23.
    Aburakhia, S. A., Badran, E. F., & Mohamed, D. A. E. (2009). Linear companding transform for the reduction of peak-to-average power ratio of OFDM signals. IEEE Transaction on Broadcasting, 55(1), 155–160.CrossRefGoogle Scholar
  24. 24.
    Li, X., & Cimini, L. J, Jr. (1998). Effects of clipping and filtering on the performance of OFDM. IEEE Communication Letters, 2(5), 131–133.CrossRefzbMATHGoogle Scholar
  25. 25.
    Armstrong, J. (2002). Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. Electronics Letters, 38(5), 246–247.CrossRefMathSciNetGoogle Scholar
  26. 26.
    Ochiai, H., & Imai, H. (2000). Performance of the deliberate clipping with adaptive symbol selection for strictly band-limited OFDM systems. IEEE Journal on Selected Areas in Communication, 18(11), 2270–2277.CrossRefGoogle Scholar
  27. 27.
    Wang, X., Tjhung, T. T., & Ng, C. S. (1999). Reduction of peak-to-average power ratio of OFDM system using a companding technique. IEEE Transaction on Broadcastaing, 45(3), 303–307.CrossRefzbMATHGoogle Scholar
  28. 28.
    Matsson, Anders, Mendenhall, Geoffrey, & Dittmer Harris, T. (1999). Comments on: Reduction of peak-to average power ratio of OFDM system using a companding technique. IEEE Transaction on Broadcasting, 45(4), 418–419.CrossRefGoogle Scholar
  29. 29.
    Jaing, T., Xiang, W., Richardson, P. C., Qu, D., & Zhu, G. (2007). On the nonlinear companding transform for reduction in PAPR of MCM. IEEE Transaction on Wireless Communication, 6(6), 2017–2021.CrossRefGoogle Scholar
  30. 30.
    Jiang, T., Yang, Y., & Song, Y. (2005). Exponential companding transform for PAPR reduction in OFDM systems. IEEE Transaction on Broadcasting, 51(2), 244–248.CrossRefGoogle Scholar
  31. 31.
    Jiang, T., Yao, W., Guo, P., Song, Y., & Qu, D. (2006). Two novel nonlinear companding schemes with iterative receiver to reduce PAPR in multi-carrier modulation systems. IEEE Transaction on Broadcasting, 52(2), 268–273.CrossRefGoogle Scholar
  32. 32.
    Jeng, S.-S., & Chen, J.-M. (2011). Efficient PAPR reduction in OFDM systems based on a companding technique With trapezium distribution. IEEE Transaction on Broadcasting, 57(2), 291–298.CrossRefMathSciNetGoogle Scholar
  33. 33.
    Haykin, S. (1998). Digital communications (2nd ed.). New York, USA: Wiley.Google Scholar
  34. 34.
    Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., et al. (1994). Templates for the solution of linear systems: Building blocks for iterative methods (2nd ed.). Philadelphia: SIAM.CrossRefGoogle Scholar
  35. 35.
    Walnut, D. F. (2003). An introduction to wavelet analysis (Applied and Numerical Harmonic Analysis), 264–269. Boston: Birkhäuser.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mohammad Javad Omidi
    • 1
    Email author
  • Arin Minasian
    • 2
  • Hamid Saeedi-Sourck
    • 3
  • Keyvan Kasiri
    • 4
  • Iraj Hosseini
    • 5
  1. 1.Isfahan University of TechnologyIsfahanIran
  2. 2.University of TorontoTorontoCanada
  3. 3.Yazd UniversityYazdIran
  4. 4.University of WaterlooWaterlooCanada
  5. 5.Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations