Wireless Personal Communications

, Volume 74, Issue 2, pp 639–664 | Cite as

Wideband HAP-MIMO Channels: A 3-D Modeling and Simulation Approach

  • Emmanouel T. Michailidis
  • Athanasios G. KanatasEmail author


High-altitude platforms (HAPs) are considered as an alternative technology to provide future generation broadband wireless communications services. This paper proposes a three-dimensional (3-D) geometry-based reference model for wideband HAP multiple-input–multiple-output (MIMO) channels. The statistical properties of the channel are analytically studied in terms of the elevation angle of the platform, the antenna arrays configuration, and the angular, the Doppler and the delay spread. Specifically, the space-time-frequency correlation function (STFCF), the space-Doppler power spectrum, and the power space-delay spectrum are derived for a 3-D non-isotropic scattering environment. Finally, a sum-of-sinusoids statistical simulation model for wideband HAP-MIMO channels is proposed. The results show that the simulation model accurately and efficiently reproduces the STFCF of the reference model. The proposed models provide a convenient framework for the characterization, analysis, test, and design of wideband HAP-MIMO communications systems with line-of-sight and non-line-of-sight links.


High-altitude platform (HAP) Multiple-input–multiple-output (MIMO) channels Ricean fading  Channel simulation Wideband channel 3-D scattering model 



This work has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program THALES MIMOSA (MIS: 380041). Investing in knowledge society through the European Social Fund.


  1. 1.
    Aragón-Zavala, A., Cuevas-Ruíz, J. L., & Delgado-Penín, J. A. (2008). High-altitude platforms for wireless communications. New York: Wiley.CrossRefGoogle Scholar
  2. 2.
    Karapantazis, S., & Pavlidou, F. N. (2005). Broadband communications via high-altitude platforms: A survey. IEEE Communications Surveys & Tutorials, 7(1), 2–31. First Qtr.Google Scholar
  3. 3.
    Bria, A., Flament, M., Gessler, F., Queseth, O., Stridh, R., & Unbehaun, M., et al. (2001). 4th Generation wireless infrastructures—scenarios and research challenges. IEEE Personal Communications—Special Edition.Google Scholar
  4. 4.
    Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335.CrossRefGoogle Scholar
  5. 5.
    Arapoglou, P.-D., Michailidis, E. T., Panagopoulos, A. D., Kanatas, A. G., & Prieto-Cerdeira, R. (2011). The land mobile earth-space channel: SISO to MIMO modeling from L- to Ka-Bands. IEEE Vehicular Technology Magazine, Special Issue on Trends in Mobile Radio Channels: Modeling, Analysis, and Simulation, 6(2), 44–53.CrossRefGoogle Scholar
  6. 6.
    Bello, P. A. (1963). Characterization of randomly time-variant linear channels. IEEE Transactions on Communications Systems, 11, 360–393.CrossRefGoogle Scholar
  7. 7.
    Cuevas-Ruíz, J. L., & Delgado-Penín, J. A. (2004). A statistical switched broadband channel model for HAPS links. In Proceedings IEEE wireless communications and networking conference (WCNC) 2004. Atlanta.Google Scholar
  8. 8.
    Cuevas-Ruíz, J. L., & Delgado-Penín, J. A. (2004). Channel model based on semi-Markovian processes, an approach for HAPS systems. In Proceedings XIV international conference on electronics, communications, and computers (CONIELECOMP) 2004 (pp. 52–56). Veracruz, Mexico.Google Scholar
  9. 9.
    Dovis, F., Fantini, R., Mondin, M., & Savi, P. (2002). Small-scale fading for high-altitude platform (HAP) propagation channels. IEEE Journal on Selected Areas in Communications, 20(3), 641–647.CrossRefGoogle Scholar
  10. 10.
    Latinovic, Z., Abdi, A., Bar-Ness, Y., (2003). A wideband space-time model for MIMO mobile fading channels. In Proceedings IEEE wireless communications and networking conference (WCNC) 2003 (pp. 338–342). New Orleans.Google Scholar
  11. 11.
    Latinovic, Z., Abdi, A., & Bar-Ness, Y., (2004). On the utility of the circular ring model for wideband MIMO channels. In Proceedings IEEE 60th vehicular technology Conference (VTC Fall) 2004, vol. 1 (pp. 96–100). Los Angeles.Google Scholar
  12. 12.
    Yuanyuan, M., & Pätzold, M. (2008). A wideband one-ring MIMO channel model under non-isotropic scattering conditions. In Proceedings IEEE vehicular technology conference (VTC Spring) (pp. 424–429). Singapore.Google Scholar
  13. 13.
    Zajić, A. G., & Stüber, G. L. (2009). Three-dimensional modeling and simulation of wideband MIMO mobile-to-mobile channels. IEEE Transactions on Wireless Communications, 8, 1260–1275.CrossRefGoogle Scholar
  14. 14.
    Michailidis, E. T., & Kanatas, A. G. (2010). Three dimensional HAP-MIMO channels: Modeling and analysis of space-time correlation. IEEE Transactions on Vehicular Technology, 59(5), 2232–2242.CrossRefGoogle Scholar
  15. 15.
    Yamada, Y., Ebine, Y., & Nakajima, N. (1987). Base station/vehicular antenna design techniques employed in high capacity land mobile communications system. Review of the Electrical Communication Laboratories, 35(2), 115–121.Google Scholar
  16. 16.
    Kuchar, A., Rossi, J. P., & Bonek, E. (2000). Directional macro-cell channel characterization from urban measurements. IEEE Transactions on Antennas and Propagation, 48(2), 137–146.CrossRefGoogle Scholar
  17. 17.
    Axiotis, D. I., Theologou, M. E., & Sykas, E. D. (2004). The effect of platform instability on the system level performance of HAPS UMTS. IEEE Communications Letters, 8(2), 111–113.CrossRefGoogle Scholar
  18. 18.
    Döttling, M., Jahn, A., Kunisch, J., & Buonomo, S. (1998). A versatile propagation channel simulator for land mobile satellite applications. In Proceedings 48th IEEE vehicular technology conference (VTC) 1998 (pp. 213–217). Ottawa.Google Scholar
  19. 19.
    Stüber, G. L. (2001). Principles of mobile communication (2nd ed.). Dordrecht: Kluwer.Google Scholar
  20. 20.
    Fleury, B. H. (2000). First- and second-order characterization of direction dispertion and space selectivity in the radio channel. IEEE Transactions on Information Theory, 46, 2027–2044.CrossRefzbMATHGoogle Scholar
  21. 21.
    Abdi, A., & Kaveh, M. (2002). A space-time correlation model for multielement antenna systems in mobile fading channels. IEEE Journal on Selected Areas in Communications, 20(3), 550–560.CrossRefGoogle Scholar
  22. 22.
    Abdi, A., Barger, J. A., & Kaveh, M. (2002). A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station. IEEE Transactions on Vehicular Technology, 51(3), 425–434.CrossRefGoogle Scholar
  23. 23.
    Mahmoud, S. S., Hussain, Z. M., & O’Shea, P. (2002). A Space-time model for mobile radio channel with hyperbolically distributed scatterers. IEEE Antennas and Wireless Propagation Letters, 1, 211–214.CrossRefGoogle Scholar
  24. 24.
    Mahmoud, S. S., Hussain, Z. M., & O’Shea, P. (2006). A geometrical-based microcell mobile radio channel model. Wireless Networks, 12(5), 653–664.CrossRefGoogle Scholar
  25. 25.
    Vázquez-Castro, M. A., Perez-Fontan, F., & Saunders, S. R. (2002). Shadowing correlation assessment and modeling for satellite diversity in urban environments. International Journal of Satellite Communications, 20(2), 151–166.CrossRefGoogle Scholar
  26. 26.
    Tzaras, C., Evans, B. G., & Saunders, S. R. (1998). Physical-statistical analysis of land mobile-satellite channel. Electronics Letters, 34(13), 1355–1357.CrossRefGoogle Scholar
  27. 27.
    Gradshteyn, I. S., & Ryzhik, I. M. (1994). Table of integrals, series and products. In: A. Jeffrey (Ed.) (5th ed.). New York: Academic Press.Google Scholar
  28. 28.
    Aulin, T. (1979). A modified model for the fading signal at a mobile radio channel. IEEE Transactions on Vehicular Technology, 28(3), 182–203.CrossRefGoogle Scholar
  29. 29.
    Vatalaro, F., & Forcella, A. (1997). Doppler spectrum in mobile-to-mobile communications in the presence of three-dimensional multipath scattering. IEEE Transactions on Vehicular Technology, 46(1), 213–219.CrossRefGoogle Scholar
  30. 30.
    Qu, S., & Yeap, T. (1999). A three-dimensional scattering model for fading channels in land mobile environment. IEEE Transactions on Vehicular Technology, 48(3), 765–781.CrossRefGoogle Scholar
  31. 31.
    Kasparis, C., King, P. R., & Evans, B. G. (2007). Doppler spectrum of the multipath fading channel in mobile satellite systems with directional terminal antennas. IET Communications, 1(6), 1089–1094.CrossRefGoogle Scholar
  32. 32.
    Rappaport, T. S. (2002). Wireless communications: Principles and practice (2nd ed.). Upper Saddle River, NJ: Prentice Hall PTR.Google Scholar
  33. 33.
    Clarke, R. H. (1968). A statistical theory of mobile-radio reception. Bell Systems Technical Journal, 47, 957–1000.CrossRefGoogle Scholar
  34. 34.
    Rice, S. O. (1944). Mathematical analysis of random noise. Bell Systems Technical Journal, 23, 282–332.CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Pätzold, M., Killat, U., Laue, F., & Li, Y. (1998). On the properties of deterministic simulation models for mobile fading channels. IEEE Transactions on Vehicular Technology, 47(1), 254–269.CrossRefGoogle Scholar
  36. 36.
    Michailidis, E. T., & Kanatas, A. G. (2012). Statistical simulation modeling of 3-D HAP-MIMO channels. Wireless Personal Communications, 65(4), 833–841.Google Scholar
  37. 37.
    Patel, C. S., Stuber, G. L., & Pratt, T. G. (2005). Comparative analysis of statistical models for the simulation of Rayleigh faded cellular channels. IEEE Transactions on Communications, 53(6), 1017–1026.CrossRefGoogle Scholar
  38. 38.
    Mardia, K. V., & Jupp, P. E. (1999). Directional statistics. New York: Wiley.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Emmanouel T. Michailidis
    • 1
  • Athanasios G. Kanatas
    • 1
    Email author
  1. 1.Department of Digital SystemsUniversity of PiraeusPiraeusGreece

Personalised recommendations