Advertisement

Wireless Personal Communications

, Volume 75, Issue 3, pp 1787–1808 | Cite as

Towards Fault-Tolerant Fine-Grained Data Access Control for Smart Grid

  • Jun Wu
  • Mianxiong DongEmail author
  • Kaoru Ota
  • Zhenyu Zhou
  • Bin Duan
Article

Abstract

Data access control within smart grids is a challenging issue because of the environmental noise and interferences. On one hand side, fine-grained data access control is essential because illegal access to the sensitive data may cause disastrous implications and/or be prohibited by the law. On the other hand, fault tolerance of the access control is very important, because of the potential impacts (implied by the errors) which could be significantly more serious than the ones regarding general data. In particular, control bits corruption could invalidate the security operation. To address the above challenges, this paper proposes a dedicated data access control scheme that is able to enforce fine-grained access control and resist against the corruptions implied by the noisy channels and the environmental interferences. The proposed scheme exploits a state-of-the-art cryptographic primitive called Fuzzy identity-based encryption with the lattice based access control and dedicated error-correction coding. We evaluate our proposed scheme by extensive simulations in terms of error correcting capability and energy consumption and results show the efficiency and feasibility of the proposed scheme. To our best knowledge, this paper is the first which addresses fault tolerant fine-grained data access control for smart grid.

Keywords

Smart grid Data access control Fault-tolerance  Identity-based encryption 

Notes

Acknowledgments

This work is supported by JSPS A3 Foresight Program and NEC C&C Foundation.

References

  1. 1.
    Fadlullah, Z. M., Kato, N., Lu, R., Shen, X., & Nozaki, Y. (2012). Towards secure targeted broadcast in smart grid. IEEE Communications Magazine, 50(5), 150–156.CrossRefGoogle Scholar
  2. 2.
    Zhang, Y., Wang, L., Sun, W., Green, R. C, I. I., & Alam, M. (2011). Distributed intrusion detection system in a multi-layer network architecture of smart grids. IEEE Transactions on Smart Grid, 2(4), 796–808.CrossRefGoogle Scholar
  3. 3.
    Fouda, M., Fadlullah, Z. M., Kato, N., Lu, R., & Shen, X. (2011). A light-weight message authentication scheme for smart grid communications. IEEE Transactions on Smart Grid, 2(4), 675–685.CrossRefGoogle Scholar
  4. 4.
    Lu, R., Liang, X., Li, X., Lin, X., & Shen, X. (2012). EPPA: An efficient and privacy-preserving aggregation scheme for secure smart grid communications. IEEE Transactions on Parallel and Distributed Systems, 23(9), 1621–1631.CrossRefGoogle Scholar
  5. 5.
    Fadlullah, Z. M., Fouda, M. M., Kato, N., Takeuchi, A., Iwasaki, N., & Nozaki, Y. (2011). Towards intelligent machine-to-machine communications in smart grid. IEEE Communications Magazine, 49(9), 60–65.CrossRefGoogle Scholar
  6. 6.
    Wu, Y., Min, G., & Yang, L. T. (2013). Performance analysis of hybrid wireless networks under bursty and correlated traffic. IEEE Transactions Vehicular Technology, 62(1), 449–454.CrossRefGoogle Scholar
  7. 7.
    Alcaraz, C., Lopez, J., Roman, R., & Chen, H. H. (2012). Selecting key management schemes for WSN applications. Computers & Security, 31(8), 956–966.CrossRefGoogle Scholar
  8. 8.
    Wu, Y., Min, G., Li, K., & Javadi, B. (2012). Modeling and analysis of communication networks in multicluster systems under spatio-temporal bursty traffic. IEEE Transactions on Parallel Distributed System, 23(5), 902–912.CrossRefGoogle Scholar
  9. 9.
    Wu, Y., Min, G., & Al-Dubai, A. Y. (2012). A new analytical model for multi-hop cognitive radio networks. IEEE Transactions on Wireless Communications, 11(5), 1643–1648.CrossRefGoogle Scholar
  10. 10.
    Hu, R. Q., Qian, Y., Chen, H. H., & Mouftah, H. T. (2012). Cyber security for smart grid communications: Part I. IEEE Communications Magazine, 50(8), 16–17.CrossRefGoogle Scholar
  11. 11.
    Fadlullah, Z. M., Fouda, M., Kato, N., Shen, X., & Nozaki, Y. (2011). An early warning system against malicious activities for smart grid communications. IEEE Network-special issue on Communication Infrastructures for Smart Grid, 25(5), 50–55.Google Scholar
  12. 12.
    Wang, X., & Yi, P. (2011). Security framework for wireless communications in smart distribution grid. IEEE Transactions on Smart Grid, 2(4), 809–818.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Neuman, C., & Tan, K. (2011). Mediating cyber and physical threat propagation in secure smart grid architectures. In Proceedings of 2nd IEEE international conference on smart grid, communications (SmartGridComm 2011).Google Scholar
  14. 14.
    Liu, J., Li, X., Liu, D., Liu, H., & Mao, P. (2011). Study on data management of fundamental model in control center for smart grid operation. IEEE Transactions on Smart Grid, 2(4), 573–579.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Qiu, J., Liu, J., Hou, Y., & Zhang, J. (2011). Use of real-time/historical database in smart grid. In Proceedings of international conference on electric information and control engineering (ICEICE 2011).Google Scholar
  16. 16.
    Cheung, H., Hamlyn, A., Mander, T., Yang, C., & Cheung, R. (2007). Strategy and role-based model of security access control for smart grids computer networks. In Proceedings of IEEE Canada electrical power conference (EPC 2007).Google Scholar
  17. 17.
    Bhatti, S. A., Shan, Q., Atkinson, R., Vieira, M., & Glover, I. A. (2011). Vulnerability of Zigbee to impulsive noise in electricity substations. In Proceedings of XXX URSI general assembly and scientific, symposium 2011.Google Scholar
  18. 18.
    Rieken, D. W., & Walker, M. R. (2011). Ultra low frequency power-line communications using a resonator circuit. IEEE Transactions on Smart Grid, 2(1), 41–50.CrossRefGoogle Scholar
  19. 19.
    Kim, S., Kwon, E. Y., Kim, M., Cheon, J. H., Ju, S., Lim, Y., et al. (2011). A secure smart-metering protocol over power-line communication. IEEE Transactions on Power Delivery, 26(4), 2370–2379.CrossRefGoogle Scholar
  20. 20.
    Rehman, O. U., Zivic, N., Tabatabaei, S. A. H. A. E., & Ruland, C. (2011). Error correcting and weighted noise tolerant message authentication codes. In Proceedings of 5th international conference on signal processing and communication systems (ICSPCS 2011).Google Scholar
  21. 21.
    Chen, S., Wu, M., & Lu, W. (2012). Compressed error and erasure correcting codes via rank-metric codes in random network coding. International Journal of Communication Systems, 25(11), 1398–1414.CrossRefGoogle Scholar
  22. 22.
    Kliazovich, D., Redana, S., & Granelli, F. (2012). Cross-layer error recovery in wireless access networks: The ARQ proxy approach. International Journal of Communication Systems, 25(4), 461–477.CrossRefGoogle Scholar
  23. 23.
    Li, H., & Ren, J. (2007). A syntax aware error-tolerant encryption for secure multimedia communications. In Proceedings of IEEE workshop on signal processing applications for public security and forensics (SAFE 2007).Google Scholar
  24. 24.
    Banu, R. (2009). Fault-tolerant encryption for space applications. IEEE Transactions Aerospace and Electronic Systems, 45(1), 266–278.CrossRefGoogle Scholar
  25. 25.
    Hemenway, B., & Ostrovsky, R. (2008). Public-key locally-decodable codes. In Proceedings of the 28th annual conference on cryptology: Advances in cryptology (CRYPTO 2008).Google Scholar
  26. 26.
    Bose, A. (2010). Smart transmission grid application and their supporting infrastructures. IEEE Transactions on Smart Grid, 1(1), 11–19.CrossRefGoogle Scholar
  27. 27.
    Rao, L., Liu, X., Xie, L., & Liu, W. (2012). Coordinated energy cost management of distributed internet data centers in smart grid. IEEE Transactions on Smart Grid, 3(1), 50–58.CrossRefGoogle Scholar
  28. 28.
    Afzal, M., & Pothamsetty, V. (2012). Analytics for distributed smart grid sensing. In Proceedings of IEEE PES innovative smart grid technologies (ISGT 2012).Google Scholar
  29. 29.
    Pipattanasomporn, M., Feroze, H., & Rahman, S. (2009). Multi-agent systems in a distributed smart grid: Design and implementation. In Proceedings of IEEE/PES power systems conference and exposition (PSCE 2009).Google Scholar
  30. 30.
    Guzelgoz, S. (2011). Characterizing wireless and powerline communication channels with applications to smart grid networks. Ph. D: Dissertation, University of South Florida, April 2011.Google Scholar
  31. 31.
    Katayama, M., Yamazato, T., & Okada, H. (2006). A mathematical model of noise in narrowband power line communication systems. IEEE Journal on Selected Areas in Communications, 24(7), 1267–1276.CrossRefGoogle Scholar
  32. 32.
    Anatory, J., Theethayi, N., Thottappillil, R., Kissaka, M. M., & Mvungi, N. H. (2008). Broadband power-line communications: The channel capacity analysis. IEEE Transactions on Power Delivery, 23(1), 164–170.CrossRefGoogle Scholar
  33. 33.
    Meng, H., Guan, Y. L., & Chen, S. (2005). Modeling and analysis of noise effects on broadband power-line communications. IEEE Transactions on Power Delivery, 20(2), 630–637.CrossRefGoogle Scholar
  34. 34.
    Shan, Q., Glover, I. A., Atkinson, R. C., Bhatti, S. A., Portugues, I. E., Moore, P. J., et al. (2011). Estimation of impulsive noise in an electricity substation. IEEE Transactions on Electromagnetic Compatibility, 53(3), 653–663.CrossRefGoogle Scholar
  35. 35.
    Close, G. F., Frey, U., Breitwisch, M., Lung, H. L., Lam, C., Hagleitner, C., & Eleftheriou, E. (2010). Device, circuit and system-level analysis of noise in multi-bit phase-change memory. In Proceedings of IEEE international electron devices meeting (IEDM 2010).Google Scholar
  36. 36.
    Liu, Z., & Kursun, V. (2007) High read stability and low leakage cache memory cell. In IEEE international symposium on circuits and systems (ISCAS 2007).Google Scholar
  37. 37.
    Fierens, P. I., Ibáñeza, S. A., Perazzo, R. P. J., Patterson, G. A., & Grosz, D. F. (2010). A memory device sustained by noise. Physics Letters A, 374(22), 2207–2209.CrossRefzbMATHGoogle Scholar
  38. 38.
    She, X., Li, N., & Jensen, D. W. (2012). SEU tolerant memory using error correction code. IEEE Transactions on Nuclear Science, 59(1), 205–210.CrossRefGoogle Scholar
  39. 39.
    Sahai, A., & Waters, B. (2005). Fuzzy identity-based encryption. In Proceedings of 25th annual international cryptology conference (CRYPTO 2005).Google Scholar
  40. 40.
    Bentoutou, Y. (2006). Efficient memory error coding for space computer applications. In Proceedings of 2nd IEEE international conference on information and communication technologies: From theory to applications (ICTTA 2006).Google Scholar
  41. 41.
    Yao, X., Clark, L. T., Patterson, D. W., & Holbert, K. E. (2010). Single event transient mitigation in cache memory using transient error checking circuits. In Proceedings of IEEE custom integrated circuits conference (CICC 2010).Google Scholar
  42. 42.
    Boncelet, C. G, Jr. (2006). The NTMAC for authentication of noisy messages. IEEE Transactions on Information Forensics Security, 1(1), 35–42.CrossRefGoogle Scholar
  43. 43.
    Sarier, N. D. (2011). A new biometric identity based encryption scheme secure against DoS attacks. Security and Communication Networks, 4(1), 23–32.CrossRefGoogle Scholar
  44. 44.
    Kovacs, L. (2006). Concept lattice structure with attribute lattices. Production System and Information Engineering, 4, 65–79.Google Scholar
  45. 45.
    Zhang, L., Zhang, H., Yin, L., & Shen, X. (2011). A mandatory access control model based on concept lattice. In Proceedings of international conference on network computing and information security (NCIS 2011).Google Scholar
  46. 46.
    Erol-Kantarci, M., & Mouftah, H. T. (2010). Wireless sensor networks for cost-efficient residential energy management in the smart grid. IEEE Transactions on Smart Grid, 2(2), 314–325.CrossRefGoogle Scholar
  47. 47.
    Gungor, V. C., Lu, B., & Hancke, G. P. (2010). Opportunities and challenges of wireless sensor networks in smart grid. IEEE Transactions on Industrial Electronics, 57(10), 3557–3564.CrossRefGoogle Scholar
  48. 48.
    Shnayder, V., Hempstead, M., Chen, B., Allen, G., Allen, G. W., & Welsh, M. (2004). Simulating the power consumption of large-scale sensor network applications. In Proceedings of international conference on embedded networked sensor systems 2004.Google Scholar
  49. 49.
    Minhas, A. A., Trathnigg, T., Steger, C., & Wei\(\beta \), R. (2006). Energy saving in pervasive wireless sensor networks. In Proceedings of 2nd IET international conference on intelligent environments (IE 2006).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jun Wu
    • 1
  • Mianxiong Dong
    • 2
    Email author
  • Kaoru Ota
    • 3
  • Zhenyu Zhou
    • 1
  • Bin Duan
    • 4
  1. 1.Global Information and Telecommunication Institute (GITI)Waseda UniversityTokyoJapan
  2. 2.School of Computer Science and EngineeringThe University of AizuAizu-WakamatsuJapan
  3. 3.Department of Information and Electronic EngineeringMuroran Institute of TechnologyMuroranJapan
  4. 4.College of Information EngineeringXiangtan UniversityHunanChina

Personalised recommendations