Wireless Personal Communications

, Volume 74, Issue 2, pp 415–426 | Cite as

Adaptively Grouped Multilevel Space-Time Trellis Codes



Grouped multilevel space-time trellis codes (GMLSTTCs) utilize multilevel coding (MLC), antenna grouping and space time trellis codes (STTCs) for simultaneously providing coding gain, diversity improvement and increased spectral efficiency. The performance of GMLSTTCs is limited due to predefining of the antenna groups. It has been shown that when perfect or partial channel state information is available at the transmitter, the performance and capacity of space-time coded system can be further improved. In this paper, we present a new code designed by combining MLC, STTCs, antenna grouping and channel state information at transmitter, henceforth referred to as adaptively grouped multilevel space time trellis codes (AGMLSTTCs). AGMLSTTCs use a single full-diversity STTC at initial some levels and multiple STTCs at some later levels. The single full diversity STTC at each initial level spans all transmit antennas and the STTC at each later level spans a group of transmit antennas. The channel state information at the transmitter is used to adaptively group the transmit antennas for the later levels. Instantaneous channel power gain is calculated between each transmit antenna and all the receive antennas. A subset of transmit antennas having maximum channel power gain is selected to form a group. The simulation results show that AGMLSTTCs enable to transmit more than one data symbol per time slot with improved error performance over GMLSTTCs with predefined transmit antenna grouping.


Multilevel coding Space time trellis code Channel state information Rayleigh fading channel Adaptive antenna grouping 


  1. 1.
    Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Hammons, A. R. Jr., & El Gamal, H. (2000). On the theory of space time codes for PSK modulation. IEEE Transactions on Information Theory, 46(2), 524–542.Google Scholar
  3. 3.
    El Gamal, H., & Hammons, A. R. Jr. (2001). Algebraic space time codes for block fading channel. In IEEE international symposium on information theory (p. 152).Google Scholar
  4. 4.
    Molisch, A. F., & Win, M. Z. (2004). MIMO systems with antenna selection. IEEE Microwave Magazine, 5(1), 46–56.CrossRefGoogle Scholar
  5. 5.
    Gore, D. A., & Paulraj, A. J. (2002). MIMO antenna subset selection with space-time coding. IEEE Transactions on Signal Processing, 50(10), 2580–2588.CrossRefGoogle Scholar
  6. 6.
    Wong, W. H., & Larsson, E. G. (2003). Orthogonal space-time block coding with antenna selection and power allocation. Electronics Letters, 39(4), 379–381.CrossRefGoogle Scholar
  7. 7.
    Tao, M., Li, Q., & Garg, H. K. (2007). Extended space-time block coding with transmit antenna selection over correlated fading channels. IEEE Transactions on Wireless Communications, 6(9), 3137–3141.CrossRefGoogle Scholar
  8. 8.
    Chen, Z., Vucetic, B., & Yuan, J. (2003). Space-time trellis codes with transmit antenna selection. Electronics Letters, 39(11), 854–855.CrossRefGoogle Scholar
  9. 9.
    Tarokh, V., Naguib, A., Seshadri, N., & Calderbank, A. R. (1999). Combined array processing and space-time coding. IEEE Transactions on Information Theory, 45(4), 1121–1128.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Narasimhan, R. (2003). Spatial multiplexing with transmit antenna and constellation selection for correlated MIMO fading channels. IEEE Transactions on Signal Processing, 51(11), 2829–2838.CrossRefGoogle Scholar
  11. 11.
    Yuan, J. (2006). Adaptive transmit antenna selection with pragmatic space-time trellis codes. IEEE Transactions on Wireless Communications, 5(7), 1706–1715.CrossRefGoogle Scholar
  12. 12.
    Liu, J.-T. (2002). Successive decoding of multiple space time coded streams in multi-input multi-output systems. In IEEE Global Telecommunications Conference (GLOBECOM ’02), vol. 1 (pp. 1007–1011).Google Scholar
  13. 13.
    Huang, Y., Xu, D., & Yang, L. (2006). Adaptive antenna grouping for space-time block coding and spatial multiplexing hybrid system. In Proceedings of the First Mobile Computing and Wireless Communication International Conference (MCWC 2006) (pp. 88–92).Google Scholar
  14. 14.
    Imai, H., & Hirakawa, S. (1977). A new multilevel coding method using error correcting codes. IEEE Transactions on Information Theory, 23(3), 371–377.CrossRefMATHGoogle Scholar
  15. 15.
    Calderbank, A. (1989). Multilevel codes and multistage decoding. IEEE Transactions on Communications, 37(3), 222–229.CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Waschmann, U., Fischer, R. F., & Huber, J. B. (1999). Multilevel codes: theoretical concepts and practical design rules. IEEE Transactions on Information Theory, 45(5), 1361–1391.CrossRefGoogle Scholar
  17. 17.
    Shang-Chih, M. A., & Chia-Hao, L. (2010). Multilevel concatenated space-time block codes. IEICE Transactions on Fundamentals of Electronics, Communications and Computer, E93-A(10), 1845–1847.Google Scholar
  18. 18.
    Baghaie, A. M. (2008). Multilevel space-time trellis codes for Rayleigh fading channels. ME Thesis. New Zealand: University of Canterbury. http://ir.canterbury.ac.nz/bitstream/10092/2101/1/Thesis_fulltext.pdf Accessed 15 March 2010.
  19. 19.
    Sharma, S. (2012). A novel weighted multilevel space-time trellis coding scheme. Computers & Mathematics with Applications, 63(1), 280–287.CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Baghaie, A. M., Martin, P. A., & Taylor, D. P. (2010). Grouped multilevel space-time trellis codes. IEEE Communications Letters, 14(3), 232–234.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringThapar UniversityPatialaIndia

Personalised recommendations