Wireless Personal Communications

, Volume 73, Issue 4, pp 1387–1402 | Cite as

A Semantic Approach for Transforming XML Data into RDF Ontology

  • Pham Thi Thu Thuy
  • Young-Koo Lee
  • Sungyoung Lee
Article

Abstract

This paper deals with the problem of transforming eXtensible Markup Language (XML) data into the Resource Description Language (RDF) which can be understood by the computer. While it is not difficult to customize XML for arbitrary data, the effective transformation is not straightforward and the result may be not semantically richer than the source document since the redundancy data resulted from the duplicate elements in XML schema. To cope with this problem, we propose an approach to measure the similarity between these duplicates before giving the transforming strategy. The similarity measure is the combination of the children and ancestor factors, which describe the relationship of elements. The experimental results show that the proposed method gives the high degree of accuracy and produces better quality of RDF ontology.

Keywords

XML RDF Duplicate Transformation Similarity measure 

References

  1. 1.
    Nayak, R., & Tran, T. (2007). A progressive clustering algorithm to group the XML data by structural and semantic similarity”. Pattern Recognition and Artificial Intelligence, 21(4), 723–743.CrossRefGoogle Scholar
  2. 2.
    W3C: Ubiquitous Web Domain. (2012). eXensible Markup Language (XML). http://www.w3.org/XML/.
  3. 3.
    Zhou, J., Chen, Z., Tang, X., Bao, Z., & Ling, T. (2012). Fast result enumeration for keyword queries on XML data. Journal of Computing Science and Engineering (JCSE), 6(2), 127–140.CrossRefGoogle Scholar
  4. 4.
    Lee, T. Y., & Cheung, D. W. (2010). Formal models and algorithms for XML data interoperability. Journal of Computing Science and Engineering (JCSE), 4(4), 313–349.Google Scholar
  5. 5.
    W3School.com. (2012). XML DTD. http://www.w3schools.com/xml/xml_dtd.asp.
  6. 6.
    W3C. (2009). XML Schema. Part I: Structure. http://www.w3.org/TR/xmlschema11-1/.
  7. 7.
    W3C. (2009). XML Schema. Part 2: Datatypes. http://www.w3.org/TR/xmlschema11-2/.
  8. 8.
    Decker, S., van Hartmelen, F., Broekstra, J., Erdmann, M., Fensel, D., Horrocks, I., et al. (2000). The semantic web an the respective roles of XML and RDF. Journal of IEEE Internet Computing, 15(3), 63–74.CrossRefGoogle Scholar
  9. 9.
    Ferdinand, M. Zirpins, C., & Trastour, D. (2004). Lifting XML Schema to OWL. In Web engineering 4th international conference, ICWE (pp. 354–358).Google Scholar
  10. 10.
    Erdmann, M., & Studer, R. (2001). How to structure and access XML documents with ontologies. Data and Knowledge Engineering, 36(3), 317–335.CrossRefMATHGoogle Scholar
  11. 11.
    Klein, M., Fensel, D., van Harmelen, F., & Horrocks, I. (2001). The relation between ontologies and XML schemas. Linkoping Electronic Articles in Computer and Information Science, 6(4).Google Scholar
  12. 12.
    Klein, M. (2002). Interpreting XML via an RDF Schema. In 13th International workshop on personal and expert systems applications (pp. 889–893).Google Scholar
  13. 13.
    Amann, B., Fundulaki, I., Scholl, M., Beeri, C., & Vercoustre, A.-M. (2001). Mapping XML fragments to community web ontologies. In Fourth international workshop on the web and databases (WebDDB’2001).Google Scholar
  14. 14.
    Melnik, S. (1999, December) Bridging the gap between RDF and XML, Technical report. Stanford University. http://infolab.stanford.edu/melnik/rdf/fusion.html.
  15. 15.
    Patel-Schneider, P. F., & Siméon, J. (2002). The Yin/Yang Web: XML syntax and RDF semantics. In Proceedings of the 11th international world wide web conference (WWW2002) (pp. 443–453).Google Scholar
  16. 16.
    Thuy, P. T. T., Lee, Y. K., Lee, S. Y., & Jeong, B. S. (2007). Transforming Valid XML Documents into RDF via RDF Schema. IEEE CS: International conference on next generation web services practices (pp. 35–40).Google Scholar
  17. 17.
    Goyal, S., & Westenthaler, R. (2004). RDF Gravity (RDF Graph Visualization Tool). http://semweb.salzburgresearch.at/apps/rdf-gravity/.
  18. 18.
    Valencio, C. R., Oyama, F. T., Scarpelini, P., Colombini, A. C., Cansian, A. M., de Souza, R. C. G., et al. (2012). MR-Radix: A multi-relational data mining algorithm. Human-Centric Computing and Information Sciences (HCIS), 2, 4.CrossRefGoogle Scholar
  19. 19.
    Berners Lee, T. (2007, March). A strawman unstriped syntax for RDF in XML. W3C.Google Scholar
  20. 20.
    Boden, J. (2001, June). Simplified XML syntax for RDF. Available at: http://www.openhealth.org/RDF/RDFSurfaceSyntax.html.
  21. 21.
    Do, H.-H., & Rahm, E. (2002). COMA: A system for flexible combination of schema matching approaches. In Proceedings of the very large data bases conference (VLDB) (pp. 610–621).Google Scholar
  22. 22.
    Yang, D. D., & Powers, D. M. W. (2005). Measuring semantic similarity in the taxonomy of wordNet. In The 28th Australasian computer science conference (ACSC2005), Australia (pp. 315–322).Google Scholar
  23. 23.
    Princeton University. (2006). WordNet A lexical database for English. http://wordnet.princeton.edu/wordnet.
  24. 24.
    Algergawy, A., Nayak, R., & Saake, G. (2010). Element similarity measures in XML schema matching. Journal of Information Sciences, 180, 4975–4998.CrossRefGoogle Scholar
  25. 25.
    Thuy, P.T.T., Lee, Y.-K., & Lee, S. (2012, April). S-Trans: Semantic transformation of XML healthcare data into OWL ontology. Knowledge-Based Systems. doi:10.1016/j.knosys.2012.04.009.
  26. 26.
    Thuy, P. T. T., Lee, Y.-K., & Lee, S. (2012, July). Semantic and structural similarities between XML Schemas for integration of ubiquitous healthcare data. Personal and Ubiquitous Computing. doi:10.1007/s00779-012-0567-5.
  27. 27.
    NIST MPEG-7 Validation Service. (2002). http://m7itb.nist.gov/M7Validation.html.
  28. 28.
    Rada, R., Mili, H., Bicknell, E., & Blettner, M. (1989). Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man and Cybernetics, 19(1), 17–30.CrossRefGoogle Scholar
  29. 29.
    Pan, R., Xu, G., Fu, B., Dolog, P., Wang, Z., & Leginus, M. (2012). Improving recommendations by the clustering of tag neighbours. Journal of Convergence (JoC), 3(1), 13–20.Google Scholar
  30. 30.
    Gonzalez, J. L., & Marcelnez, R. (2011). Phoenix: Fault-tolerant distributed web storage based on URLs. Journal of Convergence (JoC), 2(1): 79–86.Google Scholar
  31. 31.
    Luo, H., & Shyu, M.-L. (2011). Quality of service provision in mobile multimedia: A survey. Human-centric Computing and Information Sciences (HCIS), 1, 5.CrossRefGoogle Scholar
  32. 32.
    Bechhofer, S. van Harmelen, F. Hendler, J., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., et al. (2004). OWL web ontology language reference. W3C. http://www.w3.org/TR/owl-ref/.
  33. 33.
    Prud’hommeaux, E. (2007, February). Documentation of the RDF validation service. W3C Recommendation. http://www.w3.org/RDF/Validator/documentation.
  34. 34.
    Ganguly, P., Rabhi, F. A., & Ray, P. K. (2002). Bridging semantic gap. In Third Asian Pacific conference on Pattern languages of Program.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pham Thi Thu Thuy
    • 1
  • Young-Koo Lee
    • 1
  • Sungyoung Lee
    • 1
  1. 1.Department of Computer Engineering Kyung Hee UniversitySeoulRepublic of Korea
  2. 2.Faculty of Information TechnologyNha Trang UniversityNha TrangVietnam

Personalised recommendations