Advertisement

Wireless Personal Communications

, Volume 72, Issue 4, pp 2465–2479 | Cite as

3D Ellipsoidal Model for Mobile-to-Mobile Radio Propagation Environments

  • Muhammad Riaz
  • Syed Junaid Nawaz
  • Noor M. Khan
Article

Abstract

Geometrical models are mostly used for the study and analysis of the characteristics of radio communication channels. In this paper, a three-dimensional semi-ellipsoidal scattering model is proposed for mobile-to-mobile communication channels, where uniformly distributed scatterers are assumed to be confined within the semi-ellipsoids around mobile stations. The semi-ellipsoidal shape with adjustable dimensions is considered to model the scattering phenomenon in urban streets and canyons. Using the proposed scattering model, a closed-form expression for the joint probability density function of the Angle-of-Arrival in azimuth and elevation planes of the incoming multipath signals is derived at each mobile station. Moreover, various observations are made, which show the impact of scatterers’ elevation and streets’ orientation on the spatial characteristics of mobile-to-mobile communication channel.

Keywords

Angle-of-arrival Channel modeling 3D Semi-ellipsoidal  Geometric modeling Scattering Mobile-to-mobile communications 

References

  1. 1.
    Akki, A., & Haber, F. (1986). A statistical model of mobile-to-mobile land communication channel. IEEE Transactions on Vehicular Technology, 35(1), 2–7. doi: 10.1109/T-VT.1986.24062.CrossRefGoogle Scholar
  2. 2.
    Baltzis, K. (2011). A generalized elliptical scattering model for the spatial characteristics of mobile channels. Wireless Personal Communications, 1–14.Google Scholar
  3. 3.
    Baltzis, K. (2011). A simplified geometric channel model for mobile-to-mobile communications. Radioengineering, 20(4), 961.Google Scholar
  4. 4.
    Batool, T., Matthias, P., et al. (2011). A geometrical three-ring-based model for MIMO mobile-to-mobile fading channels in cooperative networks. EURASIP Journal on Advances in Signal Processing. doi: 10.1155/2011/892871.
  5. 5.
    Janaswamy, R. (2002). Angle of arrival statistics for a 3D spheroid model. IEEE Transactions on Vehicular Technology, 51(5), 1242–1247.CrossRefGoogle Scholar
  6. 6.
    Kuchar, A., Rossi, J. P., & Bonek, E. (2000). Directional macro-cell channel characterization from urban measurements. IEEE Transactions on Antennas and Propagation, 48(2), 137–146. doi: 10.1109/8.833062.CrossRefGoogle Scholar
  7. 7.
    Nawaz, S. J., Khan, N. M., Patwary, M. N., & Moniri, M. (2011). Effect of directional antenna on the doppler spectrum in 3-D mobile radio propagation environment. IEEE Transactions on Vehicular Technology, 60(7), 2895–2903. doi: 10.1109/TVT.2011.2161788.CrossRefGoogle Scholar
  8. 8.
    Nawaz, S. J., Qureshi, B. H., & Khan, N. M. (2010). A generalized 3-D scattering model for a macrocell environment with a directional antenna at the BS. IEEE Transactions on Vehicular Technology, 59(7), 3193–3204. doi: 10.1109/TVT.2010.2050015.CrossRefGoogle Scholar
  9. 9.
    Patzold, M., Hogstad, B., & Youssef, N. (2008). Modeling, analysis, and simulation of MIMO mobile-to-mobile fading channels. IEEE Transactions on Wireless Communications, 7(2), 510–520.CrossRefGoogle Scholar
  10. 10.
    Patzold, M., Hogstad, B., Youssef, N. & Kim, D. (2005). A MIMO mobile-to-mobile channel model: Part i- the reference model. In Proceedings of IEEE 16th international symposium on personal, indoor and mobile radio communications. (vol. 1, pp. 573–578) IEEE.Google Scholar
  11. 11.
    Paul, B., Bhattacharjee, R., et al. (2010). Time and angle of arrival statistics of mobile-to-mobile communication channel employing dual annular strip model. IETE Journal of Research, 56(6), 327.Google Scholar
  12. 12.
    Paul, B., Hasan, A., Madheshiya, H., Bhattacharjee, R., et al. (2009). Time and angle of arrival statistics of mobile-to-mobile communication channel employing circular scattering model. IETE Journal of Research, 55(6), 275.CrossRefGoogle Scholar
  13. 13.
    Riaz, M. & Khan, N. M. (2011). Closed-form expressions for correlation function and power density spectrum in MIMO mobile-to-mobile channels using two-erose-ring model. In Proceedings of IEEE international conference on information and communication technologies (pp. 1–5). IEEE.Google Scholar
  14. 14.
    Samarasinghe, P., Lamahewa, T., Abhayapala, T. & Kennedy, R. (2010). 3D mobile-to-mobile wireless channel model. In Proceedings of Australian communications theory, workshop (pp. 30–34). doi: 10.1109/AUSCTW.2010.5426757.
  15. 15.
    Vatalaro, F., & Forcella, A. (1997). Doppler spectrum in mobile-to-mobile communications in the presence of three-dimensional multipath scattering. IEEE Transactions on Vehicular Technology, 46(1), 213–219. doi: 10.1109/25.554754.CrossRefGoogle Scholar
  16. 16.
    Wang, L., Liu, W., & Cheng, Y. (2009). Statistical analysis of a mobile-to-mobile rician fading channel model. IEEE Transactions on Vehicular Technology, 58(1), 32–38.CrossRefGoogle Scholar
  17. 17.
    Wei, C., Zhiyi, H. & Lili, Z. (2007). A reference model for MIMO mobile-to-mobile fading channel. In Proceedings of international conference on wireless communications, networking and mobile computing (pp. 228–231). IEEE.Google Scholar
  18. 18.
    Wu, T. & Kuo, C. (2007) 3d space-time-frequency correlation functions of mobile-to-mobile radio channels. In Proceedings of IEEE 65th vehicular technology conference (pp. 334–338). IEEE.Google Scholar
  19. 19.
    Zajic, A. & Stuber, G. (2006) Space-time correlated MIMO mobile-to-mobile channels. In Proceedings of IEEE 17th international symposium on personal, indoor and mobile radio communications (pp. 1–5). IEEE.Google Scholar
  20. 20.
    Zajic, A., & Stuber, G. (2008). Three-dimensional modeling, simulation, and capacity analysis of space-time correlated mobile-to-mobile channels. IEEE Transactions on Vehicular Technology, 57(4), 2042–2054. doi: 10.1109/TVT.2007.912150.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Muhammad Riaz
    • 1
  • Syed Junaid Nawaz
    • 2
  • Noor M. Khan
    • 1
  1. 1.Acme Center for Research in Wireless Communications (ARWiC)Mohammad Ali Jinnah UniversityIslamabadPakistan
  2. 2.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations