Wireless Personal Communications

, Volume 72, Issue 3, pp 1737–1753 | Cite as

Optimized Spread Spectrum Watermarking for Fading-Like Collusion Attack with Improved Detection Performance

  • Santi P. MaityEmail author
  • Seba Maity
  • Jaya Sil
  • Claude Delpha


This paper proposes an optimized spread spectrum image watermarking scheme robust against fading-like collusion attack using genetic algorithms (GA) in multiband (M-band) wavelet decomposition. M-band decomposition of host data offers advantages in better scale-space tiling and good energy compactness. This makes watermarking robust against frequency selective fading-like attack gain. On the other hand, GA would determine a threshold value for the selection of host coefficients (process gain i.e. the length of spreading code) used in watermark casting along with the respective embedding strengths. We then consider colluder (random gain) identification as multiuser detection problem and use successive interference cancelation (SIC) to accurately detect weak (low gain) colluder and innocent users too. A weighted correlator is developed first where weight factors are calculated through training/learning using a neural network. A closed mathematical form of joint probability of error is developed with the objective of minimizing the probability of false detection i.e. a colluder is identified as an innocent user and an innocent user is identified as a colluder, for a set of colluders involved. Simulation results show the relative performance gain of the weighted correlator and SIC scheme compared to the existing works.


Spread spectrum watermarking M-band wavelets GA Optimization Fading NN 


  1. 1.
    Campisi, P., Carli, M., Giunta, G., & Neri, T. (2003). Blind quality assesment for multimedia communications using tracing watermarking. IEEE Transactions on Signal Processing, 51(4), 996–1002.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Maity, S. P., & Delpha, C. (2010). Optimization in digital watermarking techniques, Chap. In Ed. vol., Adv. techn. in multimedia watermarking: Image, video and audio appl., IGI Global Pub., USA, pp. 369–406Google Scholar
  3. 3.
    Kundur, D., & Hatzinakos, D. (2001). Diversity and attacks characterization for improved robust watermarking. IEEE Transactions on Signal Processing, 29, 2383–2396.CrossRefGoogle Scholar
  4. 4.
    Maity, S. P., Maity, S., & Sil, J. (2012). Multicarrier spread spectrum watermarking for secure error concealment in fading channel. Telecommunication Systems, 12, 219–229.CrossRefGoogle Scholar
  5. 5.
    Maity, S., Sil, J., Maity, S. P., & Delpha, C. (2011). Optimized spread spectrum watermarking for fading-like collusion attack. In Proceedings of the 14th international symposium on WPMC, Brest, France.Google Scholar
  6. 6.
    Simon, M. K., Omura, J. K., Sholtz, R. A., & Levitt, B. K. (2002). Spread spectrum communications handbook (Electronic ed.). New York: McGraw-Hill.Google Scholar
  7. 7.
    Maity, S. P., & Kundu, M. K. (2011). Performance improvement in spread spectrum image watermarking using wavelets. International Journal of Wavelets, Multiresolution and Information Processing, 9(1), 1–33.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Malver, H., & Florencio, A. F. (2003). Improved spread spectrum: A new modulation technique for robust watermarking. IEEE Transactions on Signal Processing, 51, 898–905.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Krishna Kumar, S., & Sreenivas, T. (2007). Increased watermark-to-host correlation of uniform random phase watermarks in audio signals. Signal Processing, 87, 61–67.CrossRefzbMATHGoogle Scholar
  10. 10.
    Kumsawat, P., Attakitmongcol, K., & Srikaew, A. (2005). A new approach for optimization in image watermarking by using genetic algorithms. IEEE Transactions on Signal Processing, 53, 4707–4719.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wang, R. Z., Lin, C. F., & Lin, J. C. (2000). Hiding data in images by optimal moderately significant-bit replacement. IEE Electronics Letters, 36(25), 2069–2070.CrossRefGoogle Scholar
  12. 12.
    Shieh, C. S., Huang, H. C., Wang, F. H., & Pan, J. S. (2004). Genetic watermarking based on transform domain techniques. Pattern Recognition, 37(3), 555–565.CrossRefGoogle Scholar
  13. 13.
    Khan, A., & Mirza, A. (2007). Genetic perceptual shaping: Utilizing cover image and conceivable attack information using genetic programming. Information Fusion, 8(4), 354–365.CrossRefGoogle Scholar
  14. 14.
    Maity, S. P., & Kundu, M. K. (2009). Genetic algorithms for optimality of data hiding in digital images. Soft Computing 13(4), 361–373.Google Scholar
  15. 15.
    Shih, F. Y., & Wu, Y. T. (2005). Robust watermarking and compression for medical images based on genetic algorithms. Information Sciences, 176, 200–216.CrossRefGoogle Scholar
  16. 16.
    Yu, P. T., Tsai, H., & Lin, J. S. (2001). Digital watermarking based on neural networks for color images. Signal Processing, 81, 663–671.CrossRefzbMATHGoogle Scholar
  17. 17.
    Zhang, F., Pan, Z., Cao, K., Zheng, F., & Wu, F. (2008). The upper and lower bounds of the information-hiding capacity of digital images. Information Sciences, 178, 2950–2959.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Boneh, D., & Shaw, J. (1998). Collusion-secure fingerprinting for digital data. IEEE Transaction on Information Theory, 44, 1897–1905.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Luh, W., & Kundur, D. (2004). Digital media fingerprinting: Techniques and trends. In B. Furht & D. Kirovski (Eds.), Handbook of multimedia security. Boca Raton: CRC Press.Google Scholar
  20. 20.
    Shahid, Z., Chaumont, M., & Puech, W. (2010). Spread spectrum-based watermarking for Tardos code-based fingerpringting for H.264/AVC video. In Proceedings of IEEE image processing, Tiwan, China.Google Scholar
  21. 21.
    Trappe, W., Wu, M., Wang, Z. J., & Liu, K. J. R. (2003). Anti-collusion fingerprinting for multimedia. IEEE Transactions on Signal Processing, 51(4), 1069–1087.MathSciNetCrossRefGoogle Scholar
  22. 22.
    He, S., & Wu, M. (2006). Joint coding and embedding techniques for multimedia fingerprinting. IEEE Transactions Information Forensics & Security, 1(2), 231–247.CrossRefGoogle Scholar
  23. 23.
    Cha, B.-H., & Jay Kuo, C.-C. (2009). Robust MC-CDMA based fingerprinting against time-varying collusion attacks. IEEE Transactions on Information Forensics and Security, 4(3), 302–317.CrossRefGoogle Scholar
  24. 24.
    Cvejic, N., & Seppanen, T. (2004). Spread spectrum audio watermarking using frequency hopping and attack characterization. Signal Processing, 84, 207–213.CrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error measurement to structural similarity. IEEE Transactions on Image Processing, 13, 1–14.Google Scholar
  26. 26.
    Hara, S., & Prasad, R. (1997). Overview of multicarrier CDMA. IEEE Communication Magazine, 35, 126–133.CrossRefGoogle Scholar
  27. 27.
    Maity, S. P., & Mukherjee, M. (2009). Subcarrier PIC scheme for high capacity CI/MC-CDMA system with variable data rates. In Proceedings of IEEE Mobile WiMAX’09, pp. 135–140.Google Scholar
  28. 28.
    Moussaoui, M., Zaizouni, M., & Rouvaen, J. M. (2007). Another approach for partial interference cancellation. Wireless Personal Communications, 42, 587–606.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Santi P. Maity
    • 1
    Email author
  • Seba Maity
    • 2
  • Jaya Sil
    • 3
  • Claude Delpha
    • 4
  1. 1.Department of Information TechnologyBengal Engineering and Science UniversityShibpurIndia
  2. 2.Department of Electronics and Communication EngineeringCollege of Engineering and ManagementMidnapur EastIndia
  3. 3.Department of Computer Science & TechnologyBengal Engineering and Science UniversityShibpurIndia
  4. 4.CNRS, SUPELEC, Université Paris-SudParisFrance

Personalised recommendations