Wireless Personal Communications

, Volume 72, Issue 2, pp 1415–1435 | Cite as

Resource Allocation for Real Time Services in LTE Networks: Resource Allocation Using Cooperative Game Theory and Virtual Token Mechanism

  • Mauricio Iturralde
  • Anne Wei
  • Tara Ali-Yahiya
  • André-Luc Beylot


The LTE specifications provide QoS for multimedia services with fast connectivity, high mobility and security. However, 3GPP specifications have not defined scheduling algorithms to exploit the LTE characteristics to support real time services. In this article we propose a two level scheduling scheme composed by cooperative game theory, a virtual token mechanism, and the well known algorithms EXP-RULE and Modified-Largest Weighted Delay Firs (M-LWDF) in downlink system. By using cooperative game theory such as bankruptcy game and Shapley value, the proposed mechanism works by forming coalitions between flow classes to distribute the bandwidth fairly among all of them. Both algorithms EXP-RULE and M-LWDF have been modified to use a virtual token mechanism to improve their performance, giving priority to real time flows. By taking the arrival rate of packets into account, the proposed mechanism partially included in previous schedulers has been adapted to this work to increase remarkably the performance of the resource allocation for real time flows. The performance evaluation is conducted in terms of system throughput, Packet loss ratio, total cell spectral efficiency, delay and fairness index.


Wireless networks Quality of service Long term evolution  Cooperative game theory Shapley value Scheduling algorithms 


  1. 1.
    Ameigeiras, P., Wigard, J., & Mogensen, P. (Sep. 2004). Performance of the m-lwdf scheduling algorithm for streaming services in hsdpa. In IEEE Transactions on vehicular technology conference vol. 2, pp. 999–1003 Los Angeles, USA.Google Scholar
  2. 2.
    Andrews, M., Kumaran, K., Ramanan, K., Stolyar, A., Vijayakumar, R., & Whiting, P. (2001). Providing quality of service over a shared wireless link. IEEE Communications Magazine, 39(2), 150–154.CrossRefGoogle Scholar
  3. 3.
    Basukala, R., Mohd Ramli, H., & Sandrasegaran, K. (Nov. 2009). Perfomance analysis of EXP/PF and M-LWDF in downlink 3GPP TLE system. In IEEE first Asian himalayas conference, pp. 1–5 Kathmandu, Nepal.Google Scholar
  4. 4.
    Chang, K., & Han, Y. (September 2002). QoS-based adaptive scheduling for a mixed service in HDR systems. In IEEE international symposium (PIMRC). vol. 4, pp. 1914–1918, Lisboa, Portugal.Google Scholar
  5. 5.
    Choi, J.-G., & Bahk, S. (2007). Cell-throughput analysis of the proportional fair scheduler in the single-cell environment. IEEE Transactions on Vehicular Technology, 56(2), 766–778.CrossRefGoogle Scholar
  6. 6.
    Chuah, C., & Katz, R. H. (Apr. 2002). Characterizing packet audio streams from internet multimedia applications. In IEEE international communications conference (ICC) vol. 2, pp. 1199–1203 New York, USA.Google Scholar
  7. 7.
    Ekstrom, H. (2009). QoS control in the 3GPP envolved packet system. IEEE Communications Magazine, 47(2), 76–83.CrossRefGoogle Scholar
  8. 8.
    Han, Z., Ji, Z., & Liu, K. J. R. (2005). Fair multiuser channel allocation for OFDMA networks using Nash Bargaining solutions and coalitions. IEEE Transactions on Communications, 53(8), 1366–1376.CrossRefGoogle Scholar
  9. 9.
    Iturralde, M., Yahiya, T., Wei, A., & Beylot, A. (Sep. 2011). Performance study of multimedia services using virtual token mechanism for resource allocation in LTE networks. IEEE vehicular technology conference (VTC), San Francisco, USA.Google Scholar
  10. 10.
    Iturralde, M., Yahiya, T., Wei, A., & Beylot, A. (Sep. 2011). Resource allocation using shapley value in LTE networks. In IEEE international conference on personal, indoor and mobile radio communications (PIMRC), Toronto, Canada.Google Scholar
  11. 11.
    Jain, R., Chiu, D., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. Digital Equipment Corporation, Littleton, MA, DEC Rep., DEC-TR-301.Google Scholar
  12. 12.
    Jalali, A., Padovani, R., & Pankaj, P. (May. 2000). Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system. In IEEE vehicular technology conference (VTC), Tokio, Japan.Google Scholar
  13. 13.
    Kim, K., Koo, I., & Sung, S. (Oct 2004). Multiple qos support using m-lwdf in ofdma adaptive resource allocation. In IEEE local and metropolitan networks workshop (LANMAN). pp. 217–221. San Francisco, USA.Google Scholar
  14. 14.
    Meneses, B., Monteiro, J., & Salgueiro, R. (October 2009). Defining bandwidth constraints with cooperative games. In IEEE international ultra modern telecommunications and workshops (ICUMT) conference vol. 1, pp. 1–8 St. Petersburg, Rusia.Google Scholar
  15. 15.
    Niyato, D., & Hossain, E. (June 2006). A cooperative game framework for bandwidth allocation in 4G heterogeneous wireless networks. In IEEE international communications conference (ICC) vol. 9, pp. 4357–4363, Istanbul, Turkey.Google Scholar
  16. 16.
    O’Neill, B. (1982). A problem of rights arbitration from the Talmud. Mathematical Social Sciences, 2, 345–371.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Park, H., & van der Schaar, Mihaela. (2007). Bargaining strategies for networked multimedia resource management. IEEE Transactions on Communications, 55(7), 3496–3511.MathSciNetGoogle Scholar
  18. 18.
    Pedersen, K., Kolding, T., Frederiksen, F., Kovacs, I., Laselva, D., & Mogensen, P. (2009). An overview of downlink radio resource management for UTRAN long-term evolution. IEEE Communications Magazine, 47(7), 86–93.CrossRefGoogle Scholar
  19. 19.
    Piro, G., Grieco, L., Boggia, G., & Camarda, P. (April 2010). A two-level scheduling algorithm for QoS support in the downlink of LTE cellular networks. In IEEE wireless conferece European (EW), Lucca, Italy.Google Scholar
  20. 20.
    Piro, G., Grieco, L., Boggia, G., Capozzi, F., & Camarda, P. (2010). Simulating lte cellular systems: An open source framework. IEEE Transactions on Vehicular Technology, 60(2), 498–513.CrossRefGoogle Scholar
  21. 21.
    Sadiq, B., Madan, R., & Sampath, A. (2009). Downlink scheduling for multiclass traffic in LTE. EURASIP Journal on Wireless Communications and Networking, 2009, 1–18.CrossRefGoogle Scholar
  22. 22.
    Sandrasegaran, K., Ramli, M., Adibah, H., & Basukala, R. (Apr 2010). Delay-prioritized scheduling (DPS) for real time traffic in 3GPP LTE system. In IEEE Wireless communications and networking conference (WCNC), Sydney, Australia.Google Scholar
  23. 23.
    Shakkottai, S., & Stolyar, A. (2000). Scheduling for multiple flows sharing a time-varying chanel: The exponential rule. Bells Laboratories.Google Scholar
  24. 24.
    Shakkottai, S., & Stolyar, A. (2004). Scheduling algorithms for a mixure of real time and non real time data in HDR. Bells Laboratories.Google Scholar
  25. 25.
    Shapley, L. S. (1953). A value for N-Person game. Annals of mathematics Studies, Princeton University press, 2, 307–317.Google Scholar
  26. 26.
    Tech. Specif. Group Radio Access Network 3GPP. Feasibility study for orthogonal frequency division multiplexing (OFDM) for UTRAN enhancement (Release 6)”. Technical report, 3GPP TS 25.892.Google Scholar
  27. 27.
    Tech. Specif. Group Radio Access Network 3GPP. Medium access control (MAC) protocol specification (release 9)”. Technical report, 3GPP TS 36.321.Google Scholar
  28. 28.
    Tech. Specif. Group Radio Access Network 3GPP. Physical layer aspect for evolved universal terrestrial radio access (utra) (release 7). Technical report, 3GPP TS 25.814.Google Scholar
  29. 29.
    Video trace library.
  30. 30.
    Yaacoub, E., & Dawy, Z. (April 2009). A game theorical formulation for proportional fairness in LTE uplink scheduling. In IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–5, 5–8 Budapest, Hungary.Google Scholar
  31. 31.
    Zhang, G., & Zhang, H. (Nov 2008). Adapative resource allocation for downlink OFDMA networks using cooperative game theory. In IEEE Communication Systems Signal International Conference (ICCS) Guangzhou, China.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mauricio Iturralde
    • 1
  • Anne Wei
    • 2
  • Tara Ali-Yahiya
    • 3
  • André-Luc Beylot
    • 1
  1. 1.Université de Toulouse, IRIT/ENSEEIHTToulouseFrance
  2. 2.CNAM, Laboratoire cédricParisFrance
  3. 3.Université Paris Sud 11, LRIParisFrance

Personalised recommendations