Wireless Personal Communications

, Volume 71, Issue 3, pp 2023–2043

BER Performance of Walsh–Hadamard Like Kronecker Product Codes in a DS-CDMA and Cognitive Underlay System



Walsh–Hadamard transform, a discrete unitary transform is widely used in many applications such as signature codes in the current wireless standards IS-95 CDMA, WCDMA, CDMA2000 and image transform applications. It is simple to implement this transform since they can be generated by a single Kronecker product recursion formula. In this paper, a new set of binary code families similar to Walsh codes are obtained based on the concept of code concatenation and permutation. It is shown that these codes can be generated by reconfiguring the Walsh–Hadamard code generator. Hence it can be utilized in reconfigurable radios such as underlay cognitive radio (UCR). Theoretical results showing the BER performance due to MAI between primary users and secondary users in an UCR is also obtained. Simulation results showing the BER performance of these codes in a direct sequence spread spectrum system and UCR system with quadrature multiplexing operating in the individual decoding mode under AWGN plus flat fading Rayleigh channel conditions is also obtained.


Additive white Gaussian noise Under lay cognitive radio Quadrature multiplexing Primary user Secondary user Walsh–Hadamard sequences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Devroye, N., Vu, M., & Tarokh, V. (2008). Cognitive radio networks. IEEE Signal Processing Magazine, 12–23.Google Scholar
  2. 2.
    Budiarjo, I., Nikokar, H., & Ligthart, L. P. (2008). Cognitive radio modulation techniques. IEEE Signal Processing Magazine, 24–34.Google Scholar
  3. 3.
    Yi, N., Ma, Y. & Tafazolli, R. (2010). Underlay cognitive radio with full or partial channel quality information. International Journal of Navigation and Observation. Article ID 105723. doi:10.1155/2010/105723.
  4. 4.
    Scutari, G., Palomar, D. P., & Barbarossa, S. (2008). Cognitive MIMO radio. IEEE Signal Processing Magazine, 46–59.Google Scholar
  5. 5.
    Yue, G. (2008). Antijamming coding techniques. IEEE Signal Processing Magazine, 35–45.Google Scholar
  6. 6.
    Proakis, J. G. Digital communications (4th ed.). New York: McGraw-Hill International.Google Scholar
  7. 7.
    Pursley M. B. (1977) Performance evaluation for phase-coded spread-spectrum multiple-access communication-part I: System analysis. IEEE Transactions on Communications COM-25(8): 795–799MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pursley M. B., Sarwate D. V. (1977) Performance evaluation for phase-coded spread-spectrum multiple-access communication-part II: Code sequence analysis. IEEE Transactions on Communications COM-25(8): 800–803CrossRefGoogle Scholar
  9. 9.
    Chen, H.-H. The next generation CDMA technologies. London: Wiley.Google Scholar
  10. 10.
    Akansu A. N., Poluri R. (2007) Walsh-like nonlinear phase orthogonal codes for direct sequence CDMA communications. IEEE Transactions on Signal Processing 55(7): 3800–3806MathSciNetCrossRefGoogle Scholar
  11. 11.
    Moon, T. K., & Stirling, W. C. Mathematical methods and algorithms for signal processing. Upper Saddle River: Pearson Education.Google Scholar
  12. 12.
    Moon, T. K., & Stirling, W. C. Error correcting codes: Mathematical methods and algorithms. London: WileyGoogle Scholar
  13. 13.
    Elsner, J. P., Rykaczewski, P., Korner, C., & Jondral, F. K. (2007). Orthogonal complex Hadamard spreading codes for I/Q imbalance mitigation in MC-CDMA systems. VTC, 2661–2665.Google Scholar
  14. 14.
    Seberry, J., Wysocki, B. J., & Wysocki, T. A. (2003). Williamson–Hadamard spreading sequences for DS-CDMA applications. Wireless Communications and Mobile Computing, 597–607.Google Scholar
  15. 15.
    Suchitra, G., & Valarmathi, M. L. (2011). BER performance of modified Walsh Hadamard Codes in a DS-CDMA and cognitive underlay system. European Journal of Scientific Research, 563–578.Google Scholar
  16. 16.
    Parker, M. G., Paterson, K. G., & Tellambura, C. (2004). Golay complementary sequences.Google Scholar
  17. 17.
    Alaus, L., Palicot, J., Roland, C., Louet, Y., & Noguet, D. (2011). Promising technique of parameterization for reconfigurable radio, the common operators technique: Fundamentals and examples. Journal of Signal Processing System.Google Scholar
  18. 18.
    Shi, Q., Guan, Y. L., & Law, C. L. (2007). Channel-matched spreading codes for the downlink of MC-CDMA. In ICC 2007 proceedings.Google Scholar
  19. 19.
    Haykins S. (1998) Digital communications. Wiley, LondonGoogle Scholar
  20. 20.
    Oppermann I., Vucetic B. S. (1997) Complex spreading sequences with a wide range of correlation properties. IEEE Transactions on Communications 45(3): 365–375CrossRefGoogle Scholar
  21. 21.
    Jalil, A. M., Meghdadi, V., & Cances, J.-P. (2009). A new criterion for determining the efficiency of CDMA codes. In 17th European signal processing conference (EUSIPCO) (pp. 1632–1635).Google Scholar
  22. 22.
    Zhao, Y., Seberry, J., Wysocki, B. J., & Wysocki, T. A. (2006). Complex orthogonal spreading sequences using mutually orthogonal complementary sets. Microwaves, Radar and Wireless Communications, 622–625.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of ECEVLB Janakiammal College of Engineering and TechnologyCoimbatoreIndia
  2. 2.Department of CSEGovernment College of TechnologyCoimbatoreIndia

Personalised recommendations