Wireless Personal Communications

, Volume 71, Issue 3, pp 1633–1647

Blind Principles Based Interference and Noise Reduction Schemes for OFDM

  • M. G. S. Sriyananda
  • J. Joutsensalo
  • T. Hämäläinen
Open Access
Article
  • 489 Downloads

Abstract

One of the premier mechanisms used in extracting unobserved signals from observed mixtures in signal processing is employing a blind source separation (BSS) algorithm or technique. A prominent role in the sphere of multicarrier communication is played by orthogonal frequency division multiplexing (OFDM) techniques. A set of remedial solutions taken to mitigate deteriorative effects caused within the air interface of an OFDM transmission with aid of BSS schemes is presented. Two energy functions are used in deriving the filter coefficients. They are optimized and performance is justified. These functions with the iterative fixed point rule for receive signal are used in determining the filter coefficients. Time correlation properties of the channel are taken advantage for BSS. It is tried colored noise and interference components to be removed from the signal mixture at the receiver. The method is tested in a slow fading channel with a receiver containing equal gain combining to treat the channel state information values. The importance is that, these solutions can be noted as quite low computational complexity mechanisms.

Keywords

Blind source separation OFDM Slow fading Downlink 

References

  1. 1.
    Bar-Ness, Y., Carlin, J., & Steinberger, M. (1982). Bootstrapping adaptive interference cancelers: Some practical limitations. IEEE Globecom Conference, pp. 1251–1255.Google Scholar
  2. 2.
    Hrault, J., Jutten, C., & Ans, B. (1985). Dtection de grandeurs primitives dans un message composite par une architecture de calcul neuromimtique en apprentissage non supervis. In Actes du Xme colloque GRETSI Nice, France, pp. 1017–1022.Google Scholar
  3. 3.
    Ans, B., Hrault, J., & Jutten, C. (1985). Adaptive neural architectures: Detection of primitives. In Proceedings of COGNITIVA85 Paris, France, pp. 593–597.Google Scholar
  4. 4.
    Cardoso J.-F. (1998) Blind signal separation: Statistical principles. Proceedings of the IEEE 86(10): 2009–2025CrossRefGoogle Scholar
  5. 5.
    Sahin, M. E., Guvenc, I., & Arslan, H. (2010). Uplink user signal separation for OFDMA-based cognitive radios. EURASIP Journal on Advances in Signal Processing Hindawi Publishing Corporation, vol. 2010, Article ID 502369.Google Scholar
  6. 6.
    Abrard F., Deville Y. (2005) A timefrequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Elsevier Journal on Signal Processing 85: 1389–1403MATHCrossRefGoogle Scholar
  7. 7.
    Ye C., Kumar B. V. K. V., Coimbra M. T. (2012) Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Transaction on Biomedical Engineering 59(10): 2930–2941CrossRefGoogle Scholar
  8. 8.
    Haufe S., Tomioka R., Nolte G., Müller K.-R., Kawanabe M. (2010) Modeling sparse connectivity between underlying brain sources for EEG/MEG. IEEE Transaction on Biomedical Engineering 57(8): 1954–1963CrossRefGoogle Scholar
  9. 9.
    Zheng C.-H., Huang D.-S., Zhang L., Kong X.-Z. (2009) Tumor clustering using nonnegative matrix factorization with gene selection. IEEE Transactions on Information Technology in Biomedicine 13(4): 599–607CrossRefGoogle Scholar
  10. 10.
    Waheed M. E. (2009) Blind signal separation using an adaptive weibull distribution. International Journal of Physical Sciences 4(5): 265–270Google Scholar
  11. 11.
    Vizireanu D. N. (2012) A fast, simple and accurate time-varying frequency estimation method for single-phase electric power systems. Measurement 45(5): 1331–1333CrossRefGoogle Scholar
  12. 12.
    Schobben, D. W. E., & Sommen, P. C. W. (1998). A new blind signal separation algorithm based on second order statistics. In Proceeding of IASTED international conference on signal and image processing Las Vegas, USA.Google Scholar
  13. 13.
    Chiappetta P., Roubaud M. C., Torrésani B. (2004) Blind source separation and the analysis of microarray data. Journal of Computational Biology 11: 1090–1109CrossRefGoogle Scholar
  14. 14.
    Vizireanu D. N., Halunga S. V. (2012) Analytical formula for three points sinusoidal signals amplitude estimation errors. International Journal of Electronics 99(1): 149–151CrossRefGoogle Scholar
  15. 15.
    Belouchrani A., Abed-Meraim K., Cardoso J.-F., Moulines E. (1997) A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing 45(2): 434–444CrossRefGoogle Scholar
  16. 16.
    Parra L., Sajda P. (2003) Blind source separation via generalized eigenvalue decomposition. The Journal of Machine Learning Research 4: 1261–1269MathSciNetGoogle Scholar
  17. 17.
    Haykin S. (2001) Communication systems (4th ed.). Wiley, LondonGoogle Scholar
  18. 18.
    Sung, C. K., & Lee, I. (2005). Multiuser bit-interleaved coded OFDM with limited feedback information. IEEE Vehicular Technology Conference Dallas, Texas, USA.Google Scholar
  19. 19.
    Hanzo L., Yang L.-L., Kuan E.-L., Yen K. (2003) Single- and multi-carrier DSCDMA: Multi-user detection, space-time spreading, synchronisation, networking and standards. Wiley, LondonCrossRefGoogle Scholar
  20. 20.
    Proakis J. G. (2001) Digital communications (4th ed.). McGraw-Hill, New YorkGoogle Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • M. G. S. Sriyananda
    • 1
  • J. Joutsensalo
    • 1
  • T. Hämäläinen
    • 1
  1. 1.Department of Mathematical Information TechnologyFaculty of Information TechnologyUniversity of JyväskyläFinland

Personalised recommendations