Advertisement

Wireless Personal Communications

, Volume 71, Issue 2, pp 1193–1215 | Cite as

Time-Domain Block and Per-Tone Equalization for MIMO–OFDM in Shallow Underwater Acoustic Communication

  • Mojtaba BeheshtiEmail author
  • Mohammad Javad Omidi
  • Ali Mohammad Doost-Hoseini
Article

Abstract

Shallow underwater acoustic (UWA) channel exhibits rapid temporal variations, extensive multipath spreads, and severe frequency-dependent attenuations. So, high data rate communication with high spectral efficiency in this challenging medium requires efficient system design. Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO–OFDM) is a promising solution for reliable transmission over highly dispersive channels. In this paper, we study the equalization of shallow UWA channels when a MIMO–OFDM transmission scheme is used. We address simultaneously the long multipath spread and rapid temporal variations of the channel. These features lead to interblock interference (IBI) along with intercarrier interference (ICI), thereby degrading the system performance. We describe the underwater channel using a general basis expansion model (BEM), and propose time-domain block equalization techniques to jointly eliminate the IBI and ICI. The block equalizers are derived based on minimum mean-square error and zero-forcing criteria. We also develop a novel approach to design two time-domain per-tone equalizers, which minimize bit error rate or mean-square error in each subcarrier. We simulate a typical shallow UWA channel to demonstrate the desirable performance of the proposed equalization techniques in Rayleigh and Rician fading channels.

Keywords

Underwater acoustic channel Multiple-input multiple-output (MIMO) Orthogonal frequency division multiplexing (OFDM) Basis expansion model (BEM) Equalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kilfoyle D., Baggeroer A. (2000) The state of the art in underwater acoustic telemetry. IEEE Journal of Oceanic Engineering 25(1): 4–27CrossRefGoogle Scholar
  2. 2.
    Chitre M., Shahabudeen S., Stojanovic M. (2008) Underwater acoustic communications and networking: Recent advances and future challenges. Marine Technology Society Journal 42(1): 103–116CrossRefGoogle Scholar
  3. 3.
    Catipovic J., Baggeroer A., VonDer Heydt K., Koelsch D. (1984) Design and performance analysis of a digital acoustic telemetry system for the short range underwater channel. IEEE Journal of Oceanic Engineering 9(4): 242–252CrossRefGoogle Scholar
  4. 4.
    Stojanovic M., Catipovic J., Proakis J. G. (1993) Adaptive multichannel combining and equalization for underwater acoustic communications. Journal of Acoustical Socity of America 94(3): 1621–1631CrossRefGoogle Scholar
  5. 5.
    Lam, W. K., & Ormondroyd, R. F. (1997). A coherent COFDM modulation system for a time-varying frequency-selective underwater acoustic channel. In: Proceedings of international conference on electronic engineering in oceanography, Southampton, UK, pp. 198–203Google Scholar
  6. 6.
    Kim, B.-Ch., & Lu, I.-T. (2000). Parameter study of OFDM underwater communuications system. In: Proceedings of MTS/IEEE oceans conference, Providence, USA, pp. 1251–1255Google Scholar
  7. 7.
    Frassati, F., Lafon, C., Laurent, P.-A., & Passerieux, J.-M. (2005). Experimental assessment of OFDM and DSSS modulations for use in littoral. In: Proceedings of IEEE oceans conference, Washington, D.C., USA, pp. 826–831Google Scholar
  8. 8.
    Zhang, Y., Sun, H., Cheng E., & Shen, W. (2010). An underwater acoustic implementation of DFT-spread OFDM. EURASIP Journal of Advances in Signal Processing, Article ID 572453, 6 pp.Google Scholar
  9. 9.
    LeBlanc L. R., Beaujean P.-P. J. (2000) Spatio-temporal processing of coherent acoustic communication data in shallow water. IEEE Journal of Oceanic Engineering 25(1): 40–51CrossRefGoogle Scholar
  10. 10.
    Roy S., Duman T. M., McDonald V. (2009) Error rate improvement in underwater MIMO communications using sparse partial response equalization. IEEE Journal of Oceanic Engineering 34(2): 181–201CrossRefGoogle Scholar
  11. 11.
    Li, B., Zhou, Sh., Stojanovic, M., Freitag, L., Jie, H., & Willett, P. (2007). MIMO–OFDM over an underwater acoustic channel. In: Proceedings of IEEE Oceans Conference, Vancouver, Canada, pp. 1–6Google Scholar
  12. 12.
    Emre, Y., Kandasamy, V., Duman, T. M., Hursky, P., & Roy, S. (2008). Multi-input multi-output OFDM for shallow-water UWA communications. In: Proceedings of acoustic conference, Paris, France, pp. 5333–5338Google Scholar
  13. 13.
    Ma, X., Zhao, Ch., & Qiao, G. (2009). The underwater acoustic MIMO–OFDM system channel equalizer basing on independent component analysis. In: Proceedings of WRI international conference on communication and mobile computing, Kunming, Yunnan, pp. 568–572.Google Scholar
  14. 14.
    Ceballos Carrascosa P., Stojanovic M. (2010) Adaptive channel estimation and data detection for underwater acoustic MIMO–OFDM systems. IEEE Journal of Oceanic Engineering 35(3): 635–646CrossRefGoogle Scholar
  15. 15.
    Nisar, M. D., Utschick, W., Nottensteiner H., & Hindelang, T. (2007). On channel estimation and equalization of OFDM systems with insufficient cyclic prefix. In: Proceedings of IEEE vehicular technology conference, Dublin, pp. 1445–1449.Google Scholar
  16. 16.
    Hsu C.-Y., Wu W.-R. (2009) Low-complexity ICI mitigation methods for high-mobility SISO/MIMO–OFDM systems. IEEE Transactions on Vehicular Technology 58(6): 2755–2768CrossRefGoogle Scholar
  17. 17.
    Beheshti M., Omidi M. J., Doost-Hoseini A. M. (2009) Equalization of SIMO-OFDM systems with insufficient cyclic prefix in doubly selective channels. IET Communications 3(12): 1870–1882MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zemen T., Mecklenbräuker F. (2005) Time-variant channel estimation using discrete prolate spheroidal sequences. IEEE Transactions on Signal Processing 53(9): 3597–3607MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hijazi H., Ros L. (2009) Polynomial estimation of time-varying multipath gains with intercarrier interference mitigation in OFDM systems. IEEE Transactions on Vehicular Technology 58(1): 140–151CrossRefGoogle Scholar
  20. 20.
    Teo, K. A. D., & Ohno, S. (2005). Optimal MMSE finite parameter model for doubly-selective channels. In: Proceedings of IEEE global telecommunication conference, St. Louis, MO, pp. 3503–3507Google Scholar
  21. 21.
    Giannakis G. B., Tepedelenlioğlu C. (1998) Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels. Proceedings of IEEE 86(10): 1969–1986CrossRefGoogle Scholar
  22. 22.
    Barhumi, I., Leus, G., & Moonen, M. (2004). Per-tone equalization for OFDM over doubly selective channels. In: Proceedings of IEEE international conference on communication, Paris, France, pp. 2642–2647Google Scholar
  23. 23.
    Klein A., Kaleh G. K., Baier P. W. (1996) Zero forcing and minimum mean-square-error equalization for multiuser detection in code-division multiple-access channels. IEEE Transactions on Vehicular Technology 45(2): 276–287CrossRefGoogle Scholar
  24. 24.
    Stuber G. L. (2001) Principles of mobile communications. Kluwer, Norwell, MAGoogle Scholar
  25. 25.
    Stamoulis A., Diggavi S. N., Al-Dhahir N. (2002) Intercarrier interference in MIMO–OFDM. IEEE Transactions on Signal Processing 50(10): 2451–2464CrossRefGoogle Scholar
  26. 26.
    Martin R. K., Vanbleu K., Ding M., Ysebaert G., Milosevic M., Evans B. L., Moonen M., Jr.Johnson C. R. (2005) Unification and evaluation of equalization structures and design algorithms for discrete multitone modulation systems. IEEE Transactions on Signal Processing 53(10): 3880–3894MathSciNetCrossRefGoogle Scholar
  27. 27.
    Radosevic, A., Proakis, J. G., & Stojanovic, M. (2009). Statistical characterization and capacity of shallow water acoustic channels. In: Proceedings of IEEE oceans conference, Bremen, Germany, pp. 1–8.Google Scholar
  28. 28.
    Bjem-Niese C., Bjorno L., Pinto M. A., Quellec B. (1996) A simulation tool for high data-rate acoustic communication in a shallow-water time-varying channel. IEEE Journal of Oceanic Engineering 21(2): 143–149CrossRefGoogle Scholar
  29. 29.
    Singer A. C., Nelson J. K., Kozat S. S. (2009) Signal processing for underwater acoustic communications. IEEE Communication Magazine 47(1): 90–96CrossRefGoogle Scholar
  30. 30.
    Wang Z., Giannakis G. B. (2000) Wireless multicarrier communications: Where Fourier meets Shannon. IEEE Signal Processing Magazine 17(3): 29–48CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Mojtaba Beheshti
    • 1
    Email author
  • Mohammad Javad Omidi
    • 2
  • Ali Mohammad Doost-Hoseini
    • 2
  1. 1.Information and Communication Technology InstituteIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Electrical and Computer EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations