Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Secure Transmission of Mobile Agent in Dynamic Distributed Environments

  • 226 Accesses

  • 7 Citations

Abstract

Huang et al. has recently proposed an efficient key management and access control scheme for mobile agent environments based on Elliptic Curve Cryptosystem (ECC). Although their scheme provides superior efficiency in comparison with the previous works, however some active attacks threaten its security. In this paper a new dynamic key management scheme based on ECC is proposed that is secure and also is efficient in computation cost. Analyzing the security criteria and performance confirms suitability of the proposed scheme for mobile agent environments.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Lin I. C., Ou H. H., Hwang M. S.: Efficient access control and key management schemes for mobile agents. Computer Standards & Interfaces 26(5), 423–433 (2004)

  2. 2

    Lange D. B., Oshima M.: Programming and deploying Java mobile agents with aglets. Addison-Wesley Press, Massachusetts, USA (1998)

  3. 3

    Gian P. P.: Mobile agents: An introduction. Microprocessors and Microsystems 25(2), 65–74 (2001)

  4. 4

    Biskup J., Embley D. W., Lochner J. H.: Reducing inference control to access control for normalized database schemas. Information Processing Letters 106, 8–12 (2008)

  5. 5

    Esparza O., Muñoz J. L., Soriano M., Forné J.: Secure brokerage mechanisms for mobile electronic commerce. Computer Communications 29(12), 2308–2321 (2006)

  6. 6

    Chung Y. F., Chen Y. T., Chen T. L., Chen T. S.: An agent-based English auction protocol using elliptic curve cryptosystem for mobile commerce. Expert Systems with Applications 38(8), 9900–9907 (2011)

  7. 7

    Nikooghadam M., Zakerolhosseini A.: An efficient blind signature scheme based on the elliptic curve discrete logarithm problem. The ISC International Journal of Information Security 1(2), 125–131 (2009)

  8. 8

    Saxena N., Tsudik G., Yi J. H.: Threshold cryptography in P2P and MANETs: The case of access control. Computer Networks 51(12), 3632–3649 (2007)

  9. 9

    Orgun B., Vu J.: HL7 ontology and mobile agents for interoperability in heterogeneous medical information systems. Computers in Biology and Medicine 36(7–8), 817–836 (2006)

  10. 10

    Wu S., Chen K. (2011) An efficient key-management scheme for hierarchical access control in E-medicine system. Journal of Medical Systems. doi:10.1007/s10916-011-9700-7.

  11. 11

    Lin I. C., Ou H. H., Hwang M. S.: Two secure transportation schemes for mobile agents. Information Security: An International Journal 8(1), 87–97 (2002)

  12. 12

    Corradi, A., Montanari, R., & Stefanelli, C. (1999). Security issues in mobile agent technology. In Proceedings of the 7th IEEE workshop on future trends of distributed computing systems (FTDCS ‘99), IEEE Computer Society Press, Cape Town, South Africa, pp. 3–8.

  13. 13

    Karnik, N. M., & Tripathi, A. R. (2000). A security architecture for mobile agents in Ajanta. In Proceedings of the international conference on distributed computing systems, Taipei, Taiwan, pp. 402–409.

  14. 14

    Volker R., Mehrdad J. S.: Access control and key management for mobile agents. Computers Graphics 22(4), 457–461 (1998)

  15. 15

    Chang C. C., Lin I. C.: A new solution for assigning cryptographic keys to control access in mobile agent environments. Wireless Communications and Mobile Computing 6, 137–146 (2006)

  16. 16

    Huang K. H., Chung Y. F., Liu C. H., Lai F., Chen T. S.: Efficient migration for mobile computing in distributed networks. Computer Standards Interfaces 31(1), 40–47 (2009)

  17. 17

    Vanstone S. A.: Elliptic curve cryptosystem-the answer to strong, fast public-key cryptography for securing constrained environments. Information Security Technical Report 2(2), 78–87 (1997)

  18. 18

    Stallings W.: Cryptography and network security, principles and practice (3rd ed.). Prentice Hall, Englewood Cliffs (2005)

  19. 19

    Halunga S. V., Vizireanu N.: Performance evaluation for conventional and MMSE multiuser detection algorithms in imperfect reception conditions. Digital Signal Processing 20, 166–178 (2010)

  20. 20

    Halunga S. V., Vizireanu N., Fratu O.: Imperfect cross-correlation and amplitude balance effects on conventional multiuser decoder with turbo encoding. Digital Signal Processing 20, 191–200 (2010)

  21. 21

    Abdulah Zadeh, A. (2007). High speed modular divider based on GCD algorithm, Lecture notes in computer science. In Information and Communications Security (Vol. 4861, pp. 189–200).

  22. 22

    Knuth, D. E. (1998). The art of computer programming, Semi numerical algorithms (3rd ed., Vol. 2). Reading, MA: Addison-Wesley.

  23. 23

    Menezes A. J., Orschot P. C., Vanstone S. A.: Hand-Book of Applied Cryptography. CRC Press, Boca Raton (1996)

  24. 24

    Nikooghadam M., Zakerolhosseini A., Ebrahimi Moghadam M.: Efficient utilization of elliptic curve cryptosystem for hierarchical access control. The Journal of Systems and Software 83(10), 1917–1929 (2010)

  25. 25

    Nikooghadam M., Bonyadi M. R., Malekian E., Zakerolhosseini A.: A protocol for digital signature based on the elliptic curve discrete logarithm problem. Journal of Applied Sciences 8(10), 1919–1925 (2008)

  26. 26

    Nikooghadam, M, Safaei, F. & Zakerolhosseini, A. (2010). An efficient key management scheme for mobile agents in distributed networks, In IEEE, 1st international conference on parallel, distributed and grid computing.

  27. 27

    Ben-Or, M. (1981). Probabilistic algorithms in finite fields. In 22nd annual symposium on foundations of computer science (IEEE FOCS’81), pp. 394–398.

  28. 28

    Cohen H.: A course in computational algebraic number theory. Springer, Berlin (1991)

  29. 29

    Lin Y. L., Hsu C. L.: Secure key management scheme for dynamic hierarchical access control based on ECC. The Journal of Systems and Software 84(4), 679–685 (2011)

  30. 30

    Eslami Z., Talebi M.: A new untraceable off-line electronic cash system. Electronic Commerce Research and Applications 10(1), 59–66 (2011)

  31. 31

    Koblitz N., Menezes A., Vanstone S. A.: The state of elliptic curve cryptography. Designs, Codes, and Cryptography 19(2), 173–193 (2000)

  32. 32

    Schmalisch, M., & Timmermann, D. (2003). A reconfigurable arithmetic logic unit for elliptic curve cryptosystems over GF (2m). In The 46th IEEE international midwest symposium on circuit and systems, Vol. 2, pp. 831–834.

  33. 33

    Zakerolhosseini, A., & Nikooghadam M. (2012, in press). Low-power and high-speed design of a versatile bit-serial multiplier in finite fields GF (2m). Integration the VLSI Journal doi:10.1016/j.vlsi.2012.03.001.

  34. 34

    Lin P., Chen H. Y., Fang Y., Jeng J. Y., Lu F. S.: A secure mobile electronic payment architecture platform for wireless mobile networks. IEEE Transactions on Wireless Communications 7(7), 2705–2713 (2008)

  35. 35

    Yang, J. H., & Chang, C. C. (2010). A low computational-cost electronic payment scheme for mobile commerce with large-scale mobile users. Wireless Personal Communication. doi:10.1007/s11277-010-0109-2, pp. 83–99.

Download references

Author information

Correspondence to Morteza Nikooghadam.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zakerolhosseini, A., Nikooghadam, M. Secure Transmission of Mobile Agent in Dynamic Distributed Environments. Wireless Pers Commun 70, 641–656 (2013). https://doi.org/10.1007/s11277-012-0712-5

Download citation

Keywords

  • Dynamic access control
  • Mobile agent security
  • Elliptic curve cryptosystem
  • Blind signature