Advertisement

Wireless Personal Communications

, Volume 70, Issue 2, pp 537–559 | Cite as

Joint Compensation of Transmitter and Receiver IQ Imbalance for MIMO-OFDM Over Doubly Selective Channels

  • Mojtaba BeheshtiEmail author
  • Mohammad Javad Omidi
  • Ali Mohammad Doost-Hoseini
Article

Abstract

Multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM), as a viable technique, is being widely considered for high data rate and bandwidth efficient wireless communications. However, analog impairments like in-phase/quadrature (IQ) imbalance decrease the performance of this technique. Furthermore, time variations of a doubly selective channel cause intercarrier interference (ICI) which again degrades the performance. In this paper, the digital compensation of both the transmitter and the receiver IQ imbalances in MIMO-OFDM transmission over doubly selective channels is studied. In particular, basis expansion model is employed to develop a novel IQ formulation for a time-varying channel. Using this formulation, two receiver schemes are suggested to jointly mitigate the IQ imbalance and channel time variation effects. In deriving one of these schemes, the general case of an insufficient cyclic prefix (CP) for OFDM modulation is also considered. An insufficient CP results in interblock interference (IBI). The proposed approach for insufficient CP case, unifies several existing methods for IQ imbalance compensation and IBI/ICI cancellation. Simulation results show that this approach considerably improves the achievable bit-error-rate performance.

Keywords

In-phase/quadrature (IQ) imbalance Multiple-input multiple-output (MIMO) Orthogonal frequency division multiplexing (OFDM) Doubly selective channel Compensation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weinstein S., Ebert P. (1971) Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Transactions on Communication Technology 19(5): 628–634CrossRefGoogle Scholar
  2. 2.
    Li Y. G., Stuber G. L. (2009) Orthogonal frequency division multiplexing for wireless communications. Springer, Atlanta, GAGoogle Scholar
  3. 3.
    Fazel Kh., Kaiser S. (2008) Multi-carrier and spread spectrum systems: From OFDM and MC-CDMA to LTE and WiMAX. Wiley, UKCrossRefGoogle Scholar
  4. 4.
    Hwang T., Yang Ch., Wu G., Li Sh., Li G. Y. (2009) OFDM and its wireless applications: A survey. IEEE Transactions on Vehicular Technology 58(4): 1673–1694CrossRefGoogle Scholar
  5. 5.
    Hanzo L., Akhtman Y., Wang L., Jiang M. (2011) MIMO-OFDM for LTE, WiFi and WiMAX: Coherent versus non-coherent and cooperative turbo transceivers. Wiley, UKGoogle Scholar
  6. 6.
    Fettweis G., Löhning M., Petrovic D., Windisch M., Zillmann P., Rave W. (2007) Dirty RF: A new paradigm. International Journal of Wireless Information Networks 14(2): 133–148CrossRefGoogle Scholar
  7. 7.
    Schenk T. C. W. (2008) RF imperfections in high-rate wireless systems: Impact and digital compensation. Springer, NetherlandsCrossRefGoogle Scholar
  8. 8.
    Valkama, M., Springer, A., & Hueber, G. (2010). Digital signal processing for reducing the effects of RF imperfections in radio devices—an overview. In Proceedings of IEEE international symposiom on circuits and systems (pp. 813–816.) Paris, France.Google Scholar
  9. 9.
    Razavi B. (1998) RF microelectronics. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  10. 10.
    Abidi A. (1995) Direct-conversion radio transceivers for digital communications. IEEE Journal of Solid-State Circuits 30(12): 1399–1410CrossRefGoogle Scholar
  11. 11.
    Liu C. L. (1998) Impacts of I/Q imbalance on QPSK-OFDM-QAM detection. IEEE Transactions on Consumer Electronics 44(3): 984–989CrossRefGoogle Scholar
  12. 12.
    Schuchert A., Hasholzner R., Antoine P. (2001) A novel IQ imbalance compensation scheme for the reception of OFDM signals. IEEE Transactions on Consummer Electronics 47(3): 313–318CrossRefGoogle Scholar
  13. 13.
    Tarighat A., Sayed A. H. (2007) Joint compensation of transmitter and receiver impairments in OFDM systems. IEEE Transactions on Wireless Communications 6(1): 240–247CrossRefGoogle Scholar
  14. 14.
    Tandur D., Moonen M. (2007) Joint adaptive compensation of transmitter and receiver IQ imbalance under carrier frequency offset in OFDM-based systems. IEEE Transactions on Signal Processing 55(11): 5246–5252MathSciNetCrossRefGoogle Scholar
  15. 15.
    Feigin J., Brady D. (2009) Joint transmitter/receiver I/Q imbalance compensation for direct conversion OFDM in packet-switched multipath environments. IEEE Transactions on Signal Processing 57(11): 4588–4593MathSciNetCrossRefGoogle Scholar
  16. 16.
    Krondorf, M., & Fettweis, G. (2008). OFDM link performance analysis under various receiver impairments. EURASIP Journal of Wireless Communications and Networking. doi: 10.1155/2008/145279.
  17. 17.
    Jin Y., Kwon J., Lee Y., Lee D., Ahn J. (2008) Obtained diversity gain in OFDM systems under the influence of IQ imbalance. IEICE Transactions on Communications 91-B(3): 814–820CrossRefGoogle Scholar
  18. 18.
    Park J., Lee Y., Park H. (2009) Preamble design for joint estimation of CFO and I/Q imbalance for direct conversion OFDM system. IET Communications 3(4): 597–602CrossRefGoogle Scholar
  19. 19.
    Rao, R. M., & Daneshrad, B. (2004). IQ mismatch cancellation for MIMO-OFDM systems. In Proceedings of IEEE international symposiom on personal, indoor, and mobile radio communications (pp. 2710–2714). Barcelona, Spain.Google Scholar
  20. 20.
    Schenk T. C. W. (2007) Performance analysis of zero-IF MIMO OFDM transceivers with IQ imbalance. Journal of Communications 2(7): 9–19CrossRefGoogle Scholar
  21. 21.
    Tarighat A., Sayed A. H. (2005) MIMO OFDM receivers for systems with IQ imbalances. IEEE Transactions on Signal Processing 53(9): 3583–3596MathSciNetCrossRefGoogle Scholar
  22. 22.
    Rao R. M., Daneshrad B. (2006) Analog impairments in MIMO-OFDM systems. IEEE Transactions on Wireless Communications 5(12): 3382–3387CrossRefGoogle Scholar
  23. 23.
    Zou Y., Valkama M., Renfors M. (2008) Digital compensation of I/Q imbalance effects in space-time coded transmit diversity systems. IEEE Transactions on Signal Processing 56(6): 2496–2508MathSciNetCrossRefGoogle Scholar
  24. 24.
    Gao J., Zhu X., Lin H., Nandi A. K. (2010) Independent component analysis based semi-blind I/Q imbalance compensation for MIMO-OFDM systems. IEEE Transactions on Wireless Communications 9(3): 914–920CrossRefGoogle Scholar
  25. 25.
    Tsatsanis M. K., Giannakis G. B. (1996) Modeling and equalization of rapidly fading channels. International Journal of Adaptive Control and Signal Processing 10(2/3): 159–176zbMATHCrossRefGoogle Scholar
  26. 26.
    Narasimhan B., Wang D., Narayanan S., Minn H., Al-Dhahir N. (2009) Digital compensation of frequency-dependent joint Tx/Rx I/Q imbalance in OFDM systems under high mobility. IEEE Journal of Selected Topics on Signal Processing 3(3): 405–417CrossRefGoogle Scholar
  27. 27.
    Barhumi, I., & Moonen, M. (2006). Frequency domain IQ imbalance and carrier frequency offset compensation for OFDM over doubly selective channels. In Proceedings of European signal processing conference (pp. 3097–3100). Florence, Italy.Google Scholar
  28. 28.
    Leus G., Zhou S., Giannakis G. B. (2003) Orthogonal multiple access over time- and frequency-selective fading. IEEE Transactions on Information Theory 49(8): 1942–1950MathSciNetCrossRefGoogle Scholar
  29. 29.
    Cai X. D., Giannakis G. B. (2003) Bounding performance and suppressing intercarrier interfenence in wireless mobile OFDM. IEEE Transactions on Communications 51(12): 2047–2056CrossRefGoogle Scholar
  30. 30.
    Farhang-Boroujeny B., Gazor S. (1994) Generalized sliding FFT and its application to implementation of block LMS adaptive filters. IEEE Transactions on Signal Processing 42(3): 532–538CrossRefGoogle Scholar
  31. 31.
    Barhumi I., Moonen M. (2007) IQ-imbalance compensation for OFDM in the presence of IBI and carrier-frequency offset. IEEE Transactions on Signal Processing 55(1): 256–266MathSciNetCrossRefGoogle Scholar
  32. 32.
    Tandur, D., & Moonen, M. (2007). Joint compensation of OFDM frequency selective transmitter and receiver IQ imbalance. EURASIP Journal of Wireless Communications and Networking. doi: 10.1155/2007/68563.
  33. 33.
    Barhumi I., Leus G., Moonen M. (2006) Equalization for OFDM over doubly selective channels. IEEE Transactions on Signal Processing 54(4): 1445–1458CrossRefGoogle Scholar
  34. 34.
    Beheshti M., Omidi M. J., Doost-Hoseini A. M. (2009) Equalization of SIMO-OFDM systems with insufficient cyclic prefix in doubly selective channels. IET Communications 3(12): 1870–1882MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Mojtaba Beheshti
    • 1
    Email author
  • Mohammad Javad Omidi
    • 2
  • Ali Mohammad Doost-Hoseini
    • 2
  1. 1.Information and Communication Technology InstituteIsfahan University of TechnologyEsfahänIran
  2. 2.Department of Electrical and Computer EngineeringIsfahan University of TechnologyEsfahänIran

Personalised recommendations