Wireless Personal Communications

, Volume 70, Issue 1, pp 501–517 | Cite as

Iterative Frequency-Domain Packet Combining Techniques for UWB Systems with Strong Interference Levels

  • Mário Marques da Silva
  • Rui Dinis
  • Paulo Montezuma


UWB (Ultra Wideband) systems tend to suffer strong interference from signals that occupy a significant part of the transmission band. This is an important constraint, especially when the channel remains fixed for a long period of time. In order to overcome this limitation, this paper considers UWB systems employing Single-Carrier with Frequency-Domain Equalization techniques. We propose the corresponding receiver, which also allows the soft packet combining associated to different Automatic Repeat ReQuest transmission attempts, as a measure to improve the performance through the exploitation of diversity. Our techniques are able to cope with strong interference levels as well as deep fading, even for fixed channels.


ARQ techniques Soft combining Single-carrier modulations Interference mitigation Frequency-domain equalization Ultra wide band systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shen, X., Guizani, M, Qiu, R. C., & Le-Ngoc, T. (2006). Ultra-wideband - wireless communications and networks. N.J., USA: Wiley.Google Scholar
  2. 2.
    Win M., Scholtz R. (1998) On the robustness of ultra-wide bandwidth signals in dense multipath environments. IEEE Communications Letters. 2(2): 10–12Google Scholar
  3. 3.
    Ramrez-Mireles F., Scholtz R. (2001) On the performance of ultra- wide-band signals in Gaussian noise and dense multipath. IEEE Transactions on Vehicular Technology. 50(1): 244–249CrossRefGoogle Scholar
  4. 4.
    Siwiak K. (2001) Impact of ultra wide band transmissions on a generic receiver. IEEE VTC’ 01(Spring) 2: 1181–1183Google Scholar
  5. 5.
    Luediger H., Zeisberg S. (2000) User and business perspectives on an open mobile access standard. IEEE Commmunications Magazine 38(9): 160–163CrossRefGoogle Scholar
  6. 6.
    Win M., Scholtz R. (1998) Impulse radio: How it works. IEEE Communications Letters, 2(2): 36–38CrossRefGoogle Scholar
  7. 7.
    Win M., Scholtz R. (2000) Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Transactions on Communications 48(4): 679–689CrossRefGoogle Scholar
  8. 8.
    Ishiyama, Y., & Ohtsuki, T. (2004). Performance evaluation of UWBIR and DS-UWB with MMSE-frequency domain equalization (FDE). IEEE GLOBECOM’04.Google Scholar
  9. 9.
    Popescu, D., Yaddanapudi, P., & Kondadasu, R. (2005). OFDM versus time-hopping in multiuser ultra wideband communication systems. IEEE VTC’05 (Spring).Google Scholar
  10. 10.
    Gusmão, A., Dinis, R., Conceição, J., & Esteves, N. (2000). Comparison of two modulation choices for broadband wireless communications. IEEE VTC’00 (Spring), Tokyo, Japan.Google Scholar
  11. 11.
    Falconer D., Ariyavisitakul S., Benyamin-Seeyar A., Eidson B. (2002) Frequency domain equalization for single-carrier broadband wireless systems. IEEE Communications Magazine 4(4): 58–66CrossRefGoogle Scholar
  12. 12.
    Dinis, R., Gusmão, A., & Esteves, N. (2003). On broadband block transmission over strongly frequency-selective fading channels. In Proceedings of Wireless 2003, Calgary, Canada.Google Scholar
  13. 13.
    Montezuma, P., & Gusmão, A. (2001). A pragmatic coded modulation choice for future broadband wireless communications. IEEE VTC’2001(Spring), Rhodes, Greece.Google Scholar
  14. 14.
    Benvenuto N., Dinis R., Falconer D., Tomasin S. (2010) Single carrier modulation with non linear frequency domain equalization: An idea whose time has come—again. IEEE Proceedings 98(1): 69–96CrossRefGoogle Scholar
  15. 15.
    Benvenuto N., Tomasin S. (2002) Block iterative DFE for single carrier modulation. IEE Electronics Letters 39(19): 1144–1145CrossRefGoogle Scholar
  16. 16.
    Gusmão A., Dinis R., Esteves N. (2003) On frequency-domain equalization and diversity combining for broadband wireless communications. IEEE Transactions on Communications 51(7): 1029–1033CrossRefGoogle Scholar
  17. 17.
    Vucetic B., Yuan J. (2002) Turbo codes: Principles and applications. Kluwer, DordrechtGoogle Scholar
  18. 18.
    Dinis R., Kalbasi R., Falconer D., Banihashemi A. (2004) Iterative layered space–time receivers for single-carrier transmission over severe time-dispersive channels. IEEE Communications Letters 8(9): 579–581CrossRefGoogle Scholar
  19. 19.
    Marques da Silva, M., Correia, A., Dinis, R., Souto, N., & Silva, J. (2010). Transmission techniques for emergent multicast and broadcast systems (1st ed.). New York, USA: CRC Press Auerbach Publications. ISBN:9781439815939.Google Scholar
  20. 20.
    Gusmão, A., Torres, P., Dinis, R., & Esteves, N. (2006). A class of iterative FDE techniques for reduced-CP SC-based block transmission. In International symposium on turbo codes.Google Scholar
  21. 21.
    Hagenauer J. et al (1988) Rate-compatible punctured convolutional codes (RCPC Codes) and their application. IEEE Transactions on Communications 36(4): 389–400CrossRefGoogle Scholar
  22. 22.
    Gusmão, A., Dinis, R., & Esteves, N. (1999). Adaptive HARQ schemes using punctured RR codes for ATM-compatible broadband wireless communications. IEEE VTC’99 (Fall), Amsterdam, The Netherlands.Google Scholar
  23. 23.
    Dinis, R., & Gusmão, A. (1998). Transmission techniques for increased power efficiency in OFDM-based wireless communication systems. IEEE RAWCON’98, Colorado Springs, USA.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Mário Marques da Silva
    • 1
    • 2
    • 3
  • Rui Dinis
    • 1
    • 4
  • Paulo Montezuma
    • 4
    • 5
  1. 1.Instituto de TelecomunicaçõesLisbonPortugal
  2. 2.Universidade Autónoma de LisboaLisbonPortugal
  3. 3.Escola Naval/CINAVLisbonPortugal
  4. 4.DEE-FCT-UNLCaparicaPortugal
  5. 5.UNINOVACaparicaPortugal

Personalised recommendations