Advertisement

Wireless Personal Communications

, Volume 64, Issue 3, pp 547–560 | Cite as

Wireless Underwater Communications

  • J. PoncelaEmail author
  • M. C. Aguayo
  • P. Otero
Article

Abstract

The depths of the oceans have a high potential for future industrial development and applications. Robotic autonomous systems will greatly depend on a reliable communications channel with operators and equipment either performing joint operations or on the surface. However, communications must face harsh conditions that hinder the performance. Neither electromagnetic nor optical technologies are suitable for communication because of their short range in this medium. Due to this, acoustic equipment is envisaged as the most appropriate technology, even though it suffers several negative effects such as strong attenuation at high (ultrasonic) frequencies, Doppler shifts and a time-varying multipath. In this paper, we describe the characteristics of the acoustic underwater channel and how it impacts the mechanisms at the link and network layers.

Keywords

Underwater Acoustic communications Channel modelling Networking mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    3rd Generation Partnership Project (3GPP) 36.104, Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception.Google Scholar
  2. 2.
    Akyildiz I. F., Pompili D., Melodia T. (2005) Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks 3: 257–279CrossRefGoogle Scholar
  3. 3.
    Brekhovskikh L. M., Lysanov Y. P. (2003) Fundamentals of ocean acoustics, 3rd ed. Springer, New YorkGoogle Scholar
  4. 4.
    Carlson, E. A., Beaujean, P. P., & An, E. (2006). Location-aware routing protocol for underwater acoustic networks,OCEANS, pp. 1–6.Google Scholar
  5. 5.
    Chitre, M., Shahabudeen, S., Freitag, L., Stojanovic, M. (2008). Recent advances in underwater acoustic communications & networking. OCEANS.Google Scholar
  6. 6.
    Entrambasaguas, J. T., Aguayo-Torres, M. C., Poncela, J., & Gómez, G. (2009, May). Role of convergence in GIMCV development: A vision. Wireless Personal Communications, pp. 321–324.Google Scholar
  7. 7.
    Foo, K. Y., Atkins, P. R., Collins, T., Morley, C., & Davies, J. (2004). A routing and channel-access approach for an ad hoc underwater acoustic networks. MTS/IEEE OCEANS ’04, pp. 789–795 Vol. 2.Google Scholar
  8. 8.
    Frassati F., Lafon C., Laurent P.-A., Passerieux J.-M. (2005) Experimental assessment of OFDM and DSSS modulations for use in littoral waters underwater acoustic communications. Oceans 2005—Europe 2: 826–831Google Scholar
  9. 9.
    Hobart E., Allsup G., Hosom D., Baldasarre T. (2000) Acoustic modem unit. Proceedings of IEEE Oceans Conference 2: 769–772Google Scholar
  10. 10.
    Huang, J., Zhou, S., Huang, J., Berger, C. R., & Willett, P. Progressive inter-carrier interference equalization for OFDM transmission over time-varying underwater acoustic channels. IEEE Journal of Selected Topics in Signal Processing (to appear).Google Scholar
  11. 11.
    Iltis R., Lee H., Kastner R., Doonan D., Fu T., Moore R., Chin M. (2005) An underwater acoustic telemetry modem for eco-sensing. Proceedings of IEEE Oceans Conference 2: 1844–1850Google Scholar
  12. 12.
    Kun, Z., Sen, Q. S., Aik, K. T., Aik, T. B. (2007). A real-time coded OFDM acoustic modem in very shallow underwater communications. OCEANS 2006—Asia Pacific, pp. 1–5.Google Scholar
  13. 13.
    Li B., Zhou S., Stojanovic M., Freitag L., Willett P. (2008) Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts. IEEE Journal of Oceanic Engineering 33(2): 198–209CrossRefGoogle Scholar
  14. 14.
    Mackenzie K. V. (1981) Discussion of sea-water sound-speed determinations. Journal of the Acoustical Society of America 70(3): 801–806CrossRefGoogle Scholar
  15. 15.
    Mason S. F., Berger C. R., Zhou S., Willett P. (2008) Detection, synchronization, and Doppler scale estimation with multicarrier waveforms in underwater acoustic communication. IEEE Journal on Selected Areas in Communications 26(9): 1638–1649CrossRefGoogle Scholar
  16. 16.
    Morris J. M. (1979) Optimal blocklengths for ARQ error control schemes. IEEE Transactions on Communication 27: 488–493CrossRefGoogle Scholar
  17. 17.
    Preisig J. (2007) Acoustic propagation considerations for underwater acoustic communications network development. ACM SIGMOBILE Mobile Computing Communications Review 11(4): 2–10CrossRefGoogle Scholar
  18. 18.
    Qarabaqi, P., & Stojanovic, M. (2009). Statistical modeling of a shallow water acoustic communication channel (invited paper). In Proceedings of 3rd underwater acoustic measurements conference, Nafplion, Greece.Google Scholar
  19. 19.
    Radosevic, A., Proakis, J., & Stojanovic, M. (2009). Statistical characterization and capacity of shallow water acoustic channels. IEEE Oceans Europe Conference.Google Scholar
  20. 20.
    Rice, J., Creber, B., Fletcher, C., & Baxley, P. et al (2000). Evolution of Seaweb underwater acoustic networking. OCEANS 2000 MTS/IEEE.Google Scholar
  21. 21.
    Scussel K. F., Rice J. A., Merriam S. (1997) A new mfsk acoustic modem for operation in adverse underwater channels. Proceedings of IEEE Oceans Conference 1: 247–254CrossRefGoogle Scholar
  22. 22.
    Sharif B. S., Neasham J., Hinton O. R., Adams A. E. (2000) A computationally efficient Doppler compensation system for underwater acoustic communications. IEEE Journal of Oceanic Engineering 25(1): 52–61CrossRefGoogle Scholar
  23. 23.
    Sozer E. M. (2005) Simulation and rapid prototyping environment for underwater acoustic communications: Reconfigurable modem. Proceedings of IEEE Oceans Europe Conference 1: 80–85Google Scholar
  24. 24.
    Stojanovic, M. (2005). Optimization of a data link protocol for an underwater acoustic channel. Proceedings of IEEE OCEANS’05 conference.Google Scholar
  25. 25.
    Stojanovic, M. (2008). OFDM for underwater acoustic communications: Adaptive synchronization and sparse channel estimation. IEEE international conference on acoustics, speech and signal processing, ICASSP 2008, pp. 5288–5291.Google Scholar
  26. 26.
    Stojanovic M., Preisig J. (2009) Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine 47(1): 84–89CrossRefGoogle Scholar
  27. 27.
    Syed A., Ye W., Heidemann J. (2008) Comparison and evaluation of the T-Lohi MAC for underwater acoustic sensor networks. IEEE Journal on Selected Areas in Communications 26(9): 1731–1743CrossRefGoogle Scholar
  28. 28.
    van de Beek, J., Ödling, P., Wilson, S. & Börjesson, P. (2002). Review of Radio Science, 1996–1999, Orthogonal Frequency Division Multiplexing (OFDM). Wiley: London.Google Scholar
  29. 29.
    Wong, Y. F., Ngoh, L. H., Wong, W. C., & Seah, W. K. G. (2006). Intelligent sensor monitoring for industrial underwater applications. IEEE International Conference on Industrial Informatics, pp. 144–149.Google Scholar
  30. 30.
    Yang W. B., Yang T. C. (2006) High-frequency channel characterization for M-ary frequency-shift-keying underwater acoustic communications. Journal of Acoustic Society of America 120(5): 2615–2626CrossRefGoogle Scholar
  31. 31.
    Zorzi M., Casari P., Baldo N., Harris A.F. III (2008) Energy-efficient routing schemes for underwater acoustic networks. IEEE Journal on Selected Areas in Communications 26(9): 1754–1766CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Department of Communications EngineeringUniversity of MalagaMalagaSpain

Personalised recommendations