Advertisement

Wireless Personal Communications

, Volume 69, Issue 1, pp 307–333 | Cite as

An Adaptive Delayed Acknowledgment Strategy to Improve TCP Performance in Multi-hop Wireless Networks

  • Ammar Mohammed Al-JubariEmail author
  • Mohamed Othman
  • Borhanuddin Mohd Ali
  • Nor Asilah Wati Abdul Hamid
Article

Abstract

In multi-hop wireless networks, transmission control protocol (TCP) suffers from performance deterioration due to poor wireless channel characteristics. Earlier studies have shown that the small TCP acknowledgments consume as much wireless resources as the long TCP data packets. Moreover, generating an acknowledgment (ACK) for each incoming data packet reduces the performance of TCP. The main factor affecting TCP performance in multi-hop wireless networks is the contention and collision between ACK and data packets that share the same path. Thus, lowering the number of ACKs using the delayed acknowledgment option defined in IETF RFC 1122 will improve TCP performance. However, large cumulative ACKs will induce packet loss due to retransmission time-out at the sender side of TCP. Motivated by this understanding, we propose a new TCP receiver with an adaptive delayed ACK strategy to improve TCP performance in multi-hop wireless networks. Extensive simulations have been done to prove and evaluate our strategy over different topologies. The simulation results demonstrate that our strategy can improve TCP performance significantly.

Keywords

TCP Multi-hop wireless network Delayed ACK 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Postel, J. (Ed.). (1981). Transmission control protocol. RFC 793, IETF Network Working Group.Google Scholar
  2. 2.
    Al Hanbali A., Altman E., Nain P. (2005) A survey of TCP over ad hoc networks. IEEE Communications Surveys & Tutorials 7(3): 22–36CrossRefGoogle Scholar
  3. 3.
    Fu, Z., Meng, X., & Lu, S. (2002). How bad tcp can perform in mobile ad hoc networks. In Computers and communications, 2002. Proceedings. ISCC 2002. Seventh international symposium on (pp. 298–303).Google Scholar
  4. 4.
    Fu, Z., Zerfos, P., Luo, H., Lu, S., Zhang, L., & Gerla, M. (2003). The impact of multihop wireless channel on tcp throughput and loss. In INFOCOM 2003. Twenty-second annual joint conference of the IEEE Computer and Communications. IEEE Societies, 3 (pp. 1744–1753).Google Scholar
  5. 5.
    Altman E., Jiménez T. (2003) Novel delayed ack techniques for improving tcp performance in multihop wireless networks. Personal Wireless Communications (PWC03) 3: 237–250CrossRefGoogle Scholar
  6. 6.
    Chen J., Gerla M., Lee Y., Sanadidi M. (2008) TCP with delayed ack for wireless networks. Ad Hoc Networks 6(7): 1098–1116CrossRefGoogle Scholar
  7. 7.
    de Oliveira, R., & Braun, T. (2005). A dynamic adaptive acknowledgment strategy for tcp over multihop wireless networks. In INFOCOM 2005. 24th annual joint conference of the IEEE Computer and Communications Societies. Proceedings IEEE (Vol. 3, pp. 1863–1874).Google Scholar
  8. 8.
    Chen, B., Marsic, I., & Miller, R. (2008). Issues and improvements in tcp performance over multihop wireless networks. In Sarnoff symposium, 2008 IEEE (pp. 1–5).Google Scholar
  9. 9.
    Braden, R. (1989). Requirements for internet hosts—communication layers. RFC 1122, IETF Network Working Group.Google Scholar
  10. 10.
    Holland G., Vaidya N. (2002) Analysis of tcp performance over mobile ad hoc networks. Wireless Network 8: 275–288zbMATHCrossRefGoogle Scholar
  11. 11.
    Nahm, K., Helmy, A., & Jay Kuo, C. (2005). TCP over multihop 802.11 networks: Issues and performance enhancement. In Proceedings of the 6th ACM international symposium on mobile ad hoc networking and computing (pp. 277–287). ACM.Google Scholar
  12. 12.
    Armaghani F., Jamuar S., Khatun S., Rasid M. (2011) Performance analysis of tcp with delayed acknowledgments in multi-hop ad-hoc networks. Wireless Personal Communications 56: 791–811CrossRefGoogle Scholar
  13. 13.
    Dyer, T. D., & Boppana, R. V. (2001). A comparison of tcp performance over three routing protocols for mobile ad hoc networks. In Proceedings of the 2nd ACM international symposium on mobile ad hoc networking & computing, MobiHoc ’01 (pp. 56–66).Google Scholar
  14. 14.
    Wang X., Han Y., Xu Y. (2009) APS-FeW: Improving TCP throughput over multihop adhoc networks. Computer Communications 32(1): 19–24CrossRefGoogle Scholar
  15. 15.
    Sreekumari P., Chung S. H. (2011) Tcp nce: A unified solution for non-congestion events to improve the performance of tcp over wireless networks. EURASIP Journal on Wireless Communications and Networking 2011: 1–20. doi: 10.1186/1687-1499-2011-23 CrossRefGoogle Scholar
  16. 16.
    Yoon W., Vaidya N. (2010) Routing exploiting multiple heterogeneous wireless interfaces: A tcp performance study. Computer Communications 33(1): 23–34CrossRefGoogle Scholar
  17. 17.
    Hamrioui S., Lalam M. (2011) A new backoff algorithm of mac protocol to improve tcp protocol performance in manet. In: Cherifi H., Zain E., El-Qawasmeh J.M. (eds) Digital information and communication technology and its applications, Communications in Computer and Information Science Vol. 166. Springer, Berlin Heidelberg, pp 634–648CrossRefGoogle Scholar
  18. 18.
    Saif, A., Othman, M., Subramaniam, S., & Hamid, N. (2011). An enhanced a-msdu frame aggregation scheme for 802.11n wireless networks. Wireless Personal Communications, (pp. 1–24). doi: 10.1007/s11277-011-0358-8.
  19. 19.
    Al-Jubari A., Othman M., Mohd Ali B., Abdul Hamid N. (2011) Tcp performance in multi-hop wireless ad hoc networks: Challenges and solution. EURASIP Journal on Wireless Communications and Networking 2011: 1–25. doi: 10.1186/1687-1499-2011-198 CrossRefGoogle Scholar
  20. 20.
    Johnson, S. R. (1995). Increasing tcp throughput by using an extended acknowledgment interval. Master’s thesis. USA: Ohio University.Google Scholar
  21. 21.
    Allman M. (1998) On the generation and use of tcp acknowledgments. SIGCOMM Computer Communication Review 28: 4–21CrossRefGoogle Scholar
  22. 22.
    Shi K., Shu Y., Yang O., Wang J., Luo J. (2011) Improving tcp performance for east experimental data in the wireless lans. IEEE Transactions on Nuclear Science 58(4): 1825–1832CrossRefGoogle Scholar
  23. 23.
    Al-Jubari, A. M., & Othman, M. (2010). A new delayed ack strategy for tcp in multi-hop wireless networks. In Proc. Int information technology (ITSim) symposium, in (Vol. 2, pp. 946–951).Google Scholar
  24. 24.
    Fu Z., Luo H., Zerfos P., Lu S., Zhang L., Gerla M. (2005) The impact of multihop wireless channel on tcp performance. IEEE Transactions on Mobile Computing 4(2): 209–221CrossRefGoogle Scholar
  25. 25.
    Bharghavan V., Demers A., Shenker S., Zhang L. (1994) Macaw: A media access protocol for wireless lan’s. SIGCOMM Computer Communication Review 24: 212–225CrossRefGoogle Scholar
  26. 26.
    IEEE-802.11. (1999). wireless lan media access control (mac) and physical layer (phy)specifications. http://standards.ieee.org/getieee802.
  27. 27.
    Xu K., Gerla M., Bae S. (2003) Effectiveness of rts/cts handshake in ieee 802.11 based ad hoc networks. Ad Hoc Networks 1(1): 107–123CrossRefGoogle Scholar
  28. 28.
    Zhai H., Chen X., & Fang Y. (2004). Alleviating intra-flow and inter-flow contentions for reliable service in mobile ad hoc networks. In Military communications conference, 2004. MILCOM 2004. IEEE (Vol. 3, pp. 1640–1646).Google Scholar
  29. 29.
    Xu s., Saadawi T. (2001) Does the ieee 802.11 mac protocol work well in multihop wireless ad hoc networks?. IEEE Communications Magazine 39: 130–137CrossRefGoogle Scholar
  30. 30.
    Fall, K., Varadhan, K. (2009). The ns Manual. The VINT Project, UC Berkeley, LBL, USC/ISI, and Xerox PARC. http://www.isi.edu/nsnam/ns/.
  31. 31.
    Gurtov A., Floyd S. (2004) Modeling wireless links for transport protocols. ACM SIGCOMM Computer Communication Review 34: 85–96CrossRefGoogle Scholar
  32. 32.
    Jayakumar G., Gopinath G. (2007) Ad hoc mobile wireless networks routing protocols—a review. Computer Science 3: 574–582CrossRefGoogle Scholar
  33. 33.
    Liang B., & Haas Z. (1999) Predictive distance-based mobility management for pcs networks. In Proceedings of the 18th international conference on computer communications, INFOCOM 99, IEEE (pp. 1377–1384).Google Scholar
  34. 34.
    Bai F., Sadagopan N., & Helmy A. (2003). IMPORTANT: A framework to systematically analyze the impact of mobility on performance of routing protocols for adhoc networks. In Proceedings of the 22nd IEEE international conference on computer communications, INFOCOM 03, IEEE (pp. 825–835). San Franciso, CA, USA.Google Scholar
  35. 35.
    Bronch, J., Maltz, D., Johnson, D., Hu, Y. -C., & Jetcheva, J. (1998). A performance comparison of multi-hop wireless ad hoc network routing protocols. In Proceedings of the 4th international conference on mobile computing and networking, MobiCom 98, ACM/IEEE (pp. 85–97).Google Scholar
  36. 36.
    Aschenbruck, N., Ernst, R., Gerhards-Padilla, E., Schwamborn, M. (2010). BonnMotion—a mobility scenario generation and analysis tool. In Proceedings of the 3rd international conference on simulation tools and techniques. http://net.cs.uni-bonn.de/wg/cs/applications/bonnmotion/.
  37. 37.
    Cavalcanti E. R., Spohn M. A. (2012) On improving temporal and spatial mobility metrics for wireless ad hoc networks. Information Sciences 188: 182–197CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Ammar Mohammed Al-Jubari
    • 1
    Email author
  • Mohamed Othman
    • 1
  • Borhanuddin Mohd Ali
    • 2
  • Nor Asilah Wati Abdul Hamid
    • 1
  1. 1.Department of Communication Technology and Network, Faculty of Computer Science and Information TechnologyUniversiti Putra MalaysiaSerdang, SelangorMalaysia
  2. 2.Department of Computer and Communication System Engineering, Faculty of EngineeringUniversiti Putra MalaysiaSerdang, SelangorMalaysia

Personalised recommendations