Advertisement

Wireless Personal Communications

, Volume 68, Issue 4, pp 1525–1538 | Cite as

Localization in Wireless Networks: The Potential of Triangulation Techniques

  • Vicente OsaEmail author
  • Joaquín Matamales
  • Jose F. Monserrat
  • Javier López
Article

Abstract

User localization is one of the key service-enablers in broadband mobile communications. Moreover, from a different point of view, next steps towards automatic network optimization also depend upon the capability of the system to perform real-time user localization, in order to obtain the traffic distribution. The aim of this paper is to get deeper into the feasibility and accuracy of different localization mechanisms ranging from triangulation to database correlation. Call tracing data extracted from a real operating mobile network have been used to assess these algorithms after the execution of an extensive measurements campaign. Results show that enhanced triangulation offers the best performance even outperforming other more sophisticated mechanisms like fingerprinting, without introducing any change in the network and without requiring any special characteristic of the user equipment. Indeed, the lack of precision of channel estimates, which for the same position could differ up to 10 dB, introduces a large uncertainty that harms localization mechanisms based on database correlation. Finally, this paper identifies the areas for improvement in triangulation to reach its maximum potential, provides details for its implementation and analyzes the performance of the different proposed enhancements.

Keywords

Localization Triangulation Fingerprinting Wireless networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Laiho J., Wacker A., Novosad T. (2006) Radio Network Planning and Optimisation for UMTS 2nd Edn. Wiley, AmsterdamGoogle Scholar
  2. 2.
    Osa V., Matamales J., Monserrat J. et al (2010) Expert systems for the automatic optimisation of 3G networks. WAVES 2: 97–105Google Scholar
  3. 3.
    Gustafsson F., Gunnarsson F. (2005) Mobile positioning using wireless networks: Possibilites and fundamental limitations based on available wireless network measurements. IEEE Signal Processing Magazine 22(4): 41–53. doi: 10.1109/MSP.2005.1458284 CrossRefGoogle Scholar
  4. 4.
    Gezici S. (2008) A survey on wireless position estimation. Springer Wireless Personal Communications 44(3): 263–282. doi: 10.1007/s11277-007-9375-z CrossRefGoogle Scholar
  5. 5.
    Bahillo, A., Mazuelas, S., & Lorenzo, R.M., et al. (2010). Accurate and integrated localization system for indoor environments based on IEEE 802.11 round-trip time measurements.EURASIP Journal on Wireless Communications and Networking, 2010, Article ID 102095, p. 13. doi: 10.1155/2010/102095.
  6. 6.
    Yang Z., Liu Y. (2010) Quality of trilateration: Confidence-based iterative localization. IEEE Transactions on Parallel and Distributed Systems 21(5): 631–640. doi: 10.1109/TPDS.2009.90 CrossRefGoogle Scholar
  7. 7.
    Zimmermann, D., et al. (2004). Database correlation for positioning of mobile terminals in cellular networks using wave propagation models. In IEEE 60th Vehicular Technology Conference (Vol. 7, pp. 4682–4686) doi: 10.1109/VETECF.2004.1404980.
  8. 8.
    Zhao Y. (2002) Standardization of mobile phone positioning for 3G systems. IEEE Communications Magazine 40(7): 108–116. doi: 10.1109/MCOM.2002.1018015 CrossRefGoogle Scholar
  9. 9.
    Caffery J.J., Stuber G.L. (1998) Overview of radiolocation in CDMA cellular systems. IEEE Communications Magazine 36(4): 38–45. doi: 10.1109/35.667411 CrossRefGoogle Scholar
  10. 10.
    Kaaranen H., Ahtiainen A., Laitinen L., Naghian S., Niemi V. (2005) UMTS networks: Architecture, mobility and services. Wiley, AmsterdamCrossRefGoogle Scholar
  11. 11.
    3GPP. (2010). TS 25.215 Physical layer; Measurements (FDD). http://www.3gpp.org/ftp/Specs/archive/25_series/25.215/25215-920.zip.
  12. 12.
    3GPP. (2010). TS 25.133 Requirements for support of radio resource management. http://www.3gpp.org/ftp/Specs/archive/25_series/25.133/25133-950.zip.
  13. 13.
    3GPP. (2009). TS 45.010 Radio subsystem synchronization. http://www.3gpp.org/ftp/Specs/archive/45_series/45.010/45010-900.zip.
  14. 14.
    Kos, T., Grgic, M., & Sisul, G. (2006). Mobile user positioning in GSM/UMTS cellular networks. In 48th International Symposium ELMAR-2006 focused on multimedia signal processing and communications (pp. 185–188). doi: 10.1109/ELMAR.2006.329545.
  15. 15.
    Kirkpatrick S., Gelatt C. D. Jr., Vecchi M. P. (1983) Optimization by simulated annealing. Science 220(4598): 671–680. doi: 10.1126/science.220.4598.671 MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hepsaydir, E. (1999). Analysis of mobile positioning measurements in CDMA cellular networks. In Radio and Wireless Conference, RAWCON 99 (pp. 73–76). doi: 10.1109/RAWCON.1999.810933.
  17. 17.
    Villebrun, E., Ben Hadj Alaya, A., Boursier, Y., & Noisette, N. (2006). Indoor Outdoor user discrimination in mobile wireless networks. In Vehicular Technology Conference 2006 Fall (pp. 1–5, 25–28). doi: 10.1109/VTCF.2006.500.
  18. 18.
    Farr, T.G., et al. (2007). The shuttle radar topography mission. Reviews of geophysics, Vol. 45, RG2004, 33 pp. doi: 10.1029/2005RG000183.

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Vicente Osa
    • 1
    Email author
  • Joaquín Matamales
    • 1
  • Jose F. Monserrat
    • 1
  • Javier López
    • 2
  1. 1.iTEAM Research Institute, Universidad Politécnica de ValenciaValenciaSpain
  2. 2.Ingenia Telecom, S.L.PaternaSpain

Personalised recommendations