Wireless Personal Communications

, Volume 68, Issue 1, pp 153–173 | Cite as

Continuous Location Dependent Queries in Mobile Wireless Sensor Networks

  • Liang Hong
  • Gang Zhou
  • Bo Liu
  • Sang Son


Query processing in mobile Wireless Sensor Networks (WSNs) is still a challenging problem because sensor mobility causes frequent changes of network topology. In this paper, we study the problem of processing Continuous Location Dependent Query (CLDQ) that retrieves the sampling data of the sensors within a specific area (i.e. query area) around a mobile sensor. Existing query processing approaches can not efficiently process CLDQs with continuously moving query areas. We propose scalable techniques to process CLDQs efficiently and accurately, including a dissemination approach, a Contention-based Distance-aware Message Scheduling scheme, in which each stationary sensor’s data transmissions are smartly scheduled according to its distance to the mobile sensor, and an optimization scheme for continuous processing of CLDQs. Extensive experiments indicate that our techniques demonstrate better efficiency of processing CLDQs over state-of-the-art techniques while achieving high accuracy and short query latency under various network settings.


Location dependent query Mobile wireless sensor network Query processing Data aggregation Dissemination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borgne Y. A. L., Silvia S., Bontempi G. (2007) Adaptive model selection for time series prediction in wireless sensor networks. Singnal Processing 87(12): 3010–3020zbMATHCrossRefGoogle Scholar
  2. 2.
    Brockwell P. J., Davis R. A. (2002) Introduction to time series and forecasting. Springer-Verlag, New YorkzbMATHCrossRefGoogle Scholar
  3. 3.
    Fujimoto M. R. (2000) Parallel and distributed simulation systems. Wiley-Interscience, LondonGoogle Scholar
  4. 4.
    Gedik B., Wu K. L., Yu P. S., Liu L. (2006) Processing moving queries over moving objects using motion-adaptive indexes. IEEE Transactions on Knowledge and Data Engineering 18(5): 651–668CrossRefGoogle Scholar
  5. 5.
    Hong, L., Wu, Y., Son, S. H., & Lu, Y. (2009). Event-based location dependent data services in mobile WSNs. In RTCSA (pp. 331–340).Google Scholar
  6. 6.
    Hu F., Wang Y., Wu H. (2006) Mobile telemedicine sensor networks with low-energy data query and network lifetime considerations. IEEE Transactions on Mobile Computing 5(4): 404–417CrossRefGoogle Scholar
  7. 7.
    Huang, H., Hartman, J. H., & Hurst, T. N. (2006). Efficient and robust query processing for mobile wireless sensor networks. In GLOBECOM (pp. 1–5).Google Scholar
  8. 8.
    Ilarri S., Mena E., Illarramendi A. (2006) Location-dependent queries in mobile contexts: Distributed processing using mobile agents. IEEE Transantions on Mobile Computing 5(8): 1029–1043CrossRefGoogle Scholar
  9. 9.
    Ilarri S., Mena E., Illarramendi A. (2010) Location-dependent query processing: Where we are and where we are heading. ACM Computing Surveys 42(3): 1–73CrossRefGoogle Scholar
  10. 10.
    Ishihara, S., & Suda, T. (2009). Replica arrangement scheme for location dependent information on sensor networks with unpredictable query frequency. In ICC.Google Scholar
  11. 11.
    Kamra, A., Misra, V., & Rubenstein, D. (2007). Counttorrent: Ubiquitous access to query aggregates in dynamic and mobile sensor networks. In Sensys (pp. 43–57).Google Scholar
  12. 12.
    Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In MobiCom (pp. 243–254).Google Scholar
  13. 13.
    Kim, H. S., Abdelzaher, T. F., & Kwon, W. H. (2003). Minimum-energy asynchronous dissemination to mobile sinks in wireless sensor networks. In Sensys (pp. 193–204).Google Scholar
  14. 14.
    Liu C., Wu K., Pei J. (2007) An energy-efficient data collection framework for wireless sensor networks by exploiting spatiotemporal correlation. IEEE Transactions on Parallel and Distributed Systems 18(7): 1010–1023CrossRefGoogle Scholar
  15. 15.
    Lu, C., Xing, G., Chipara, O., Fok, C. L., & Bhattacharya, S. (2005). A spatiotemporal query service for mobile users in sensor networks. In Proceedings of the 25th IEEE international conference on distributed computing systems (pp. 381–390)Google Scholar
  16. 16.
    Madden, S., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2002). TAG: A tiny aggregation service for ad-hoc sensor networks. In OSDI (pp. 131–146).Google Scholar
  17. 17.
    Madden S., Franklin M. J., Hellerstein J. M., Hong W. (2005) TinyDB: An acquisitional query processing system for sensor networks. ACM Transactions on Database Systems 30(1): 122–173CrossRefGoogle Scholar
  18. 18.
    Stoleru R., Stankovic J. A., Son S. (2008) On composability of localization protocols for wireless sensor networks. IEEE Network Magazine, Special Issue on Composable Context Aware Services 22(4): 21–25CrossRefGoogle Scholar
  19. 19.
    Tulone, D., & Madden, S. (2006). PAQ: Time series forecasting for approximate query answering in sensor networks. In EWSN (pp. 21–37).Google Scholar
  20. 20.
    Wu, Y., Zhang, L., Wu, Y., & Niu, Z. (2006). Interest dissemination with directional antennas for wireless sensor networks with mobile sinks. In Sensys (pp. 99–111).Google Scholar
  21. 21.
    Xu, Y., Lee, W. C., Xu, J., & Mitchell, G. (2006). Processing window queries in wireless sensor networks. In ICDE (pp. 70–80).Google Scholar
  22. 22.
    Yang, X., Lim, H. B., Ozsu, M. T., & Tan, K. L. (2007). In-network execution of monitoring queries in sensor networks. In SIGMOD (pp. 521–532).Google Scholar
  23. 23.
    Ye, F., Luo, H., Cheng, J., Lu, S., & Zhang, L. (2002). A two-tier data dissemination model for largescale wireless sensor networks. In MobiCom (pp. 148–159).Google Scholar
  24. 24.
    Yoon, J., Liu, M., & Noble, B. (2003). Sound mobility models. In MobiCom.Google Scholar
  25. 25.
    Zeng X., Bagrodia R., Gerla M. (1998) GloMoSim: A library for parallel simulation of large-scale wireless networks. ACM SIGSIM Simulation Digest 28(1): 154–161CrossRefGoogle Scholar
  26. 26.
    Zhang, Y., Hull, B., Balakrishnan, H., & Madden, S. (2007). ICEDB: Intermittently-connected continuous query processing. In ICDE (pp. 166–175)Google Scholar
  27. 27.
    Zhao, W., & Tang, X. (2011). Scheduling data collection with dynamic traffic patterns in wireless sensor networks. In INFOCOM.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.School of ComputerWuhan UniversityWuhanChina
  2. 2.Department of Computer ScienceCollege of William & MaryWilliamsburgUSA
  3. 3.College of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  4. 4.Department of Computer ScienceUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations