Wireless Personal Communications

, Volume 68, Issue 1, pp 131–151 | Cite as

A Self-Adaptive Spectrum Management Middleware for Wireless Sensor Networks

  • Robert Thompson
  • Gang ZhouEmail author
  • Lei Lu
  • Sudha Krishnamurthy
  • Hover Dong
  • Xin Qi
  • Yantao Li
  • Matthew Keally
  • Zhen Ren


The vision of the Internet of Things, wherein everyday objects are embedded with smart wireless sensor devices, is making these sensor devices increasingly pervasive. As the density of their deployment in overlapping or adjacent areas increases, the contention for the unlicensed 2.4GHz ISM band will also increase. To deal with the crowded spectrum, nodes must use the channels more judiciously and be able to adapt by detecting and switching to the most available channel. The SAS middleware that we have developed, is a self-adaptive spectrum management middleware for wireless sensor networks that enhances single-frequency MAC protocols with multi-frequency capability, without any change in hardware. It allows a single-frequency MAC protocol, like B-MAC, to automatically adapt to the least congested physical channel at runtime. SAS supports a combination of receiver-initiated and sender-initiated schemes to decide when to switch the channel and which channel to switch to. We have implemented the B-MAC protocol integrated with SAS in TinyOS 2.1 on TelosB sensor devices and evaluated its performance on the conditions of varied data flows and the interference produced by a jammer. The results demonstrate that the integrated B-MAC protocol outperforms B-MAC in terms of packet reception ratio, system throughput, average packet delay, and energy consumption.


Spectrum management Wireless sensor networks Mediaaccess control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IEEE (1999). Wireless LAN medium access control (MAC) and physical layer (PHY) specification. ANSI/IEEE Std. 802.11.Google Scholar
  2. 2.
    IEEE (2002). Wireless medium access control (MAC) and physical layer (PHY) specifications for wireless personal area networks (WPANs). IEEE Std. 802.15.1.Google Scholar
  3. 3.
    IEEE (2003). Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). IEEE Std. 802.15.4.Google Scholar
  4. 4.
    Zhou, G., Stankovic, J. A., & Son, S. F. (2006). Crowded spectrum in wireless sensor networks. In IEEE EmNets.Google Scholar
  5. 5.
    Selavo, L., Zhou, G., & Stankovic, J. A. (2006). See mote: In-site visualization and logging device for wireless sensor networks. In IEEE BASENETS.Google Scholar
  6. 6.
    Wang, F., Krunz, M., & Cui, S. (2007). Spectrum sharing in cognitive radio networks. Tech. Rep., University of Arizona.Google Scholar
  7. 7.
    So, J., & Vaidya, N. (2004). Multi-channel MAC for Ad-Hoc networks: handling multi-channel hidden terminal using a single transceiver. In ACM MobiHoc.Google Scholar
  8. 8.
    Mo, J., So, H., & Walrand, J. (2005). Comparison of multi-channel MAC protocols. In Symposium on modeling, analysis, and simulation of wireless and mobile systems.Google Scholar
  9. 9.
    Zhou, G., Lei, L., Krishnamurthy, S., Keally, M., & Rhen, Z. SAS: Self-adaptive spectrum management for wireless sensor networks. In Proceedings of international conference on computer communications and networks (ICCCN).Google Scholar
  10. 10.
    Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power medium access for wireless sensor networks. In ACM SenSys.Google Scholar
  11. 11.
    Zhou, G., Huang, C., Yan, T., He, T., Stankovic, J. A., & Abdelzaher, T. F. (2006). MMSN: Multi-frequency media access control for wireless sensor networks. In IEEE INFOCOM.Google Scholar
  12. 12.
    Bahl, P., Chancre, R., & Dungeon, J.: SSCH: Slotted seeded channel hopping for capacity improvement in IEEE 802.11 Ad-Hoc wireless networks. In ACM MobiCom.Google Scholar
  13. 13.
    Raniwala, A., & Chiueh, T. (2005). Architecture and algorithm for an IEEE 802.11-based multi-channel wireless mesh network. In IEEE INFOCOM.Google Scholar
  14. 14.
    Adya, A., Bahl, P., Padhye, J., Wolman, A., & Zhou, L. (2004). A multi-radio unification protocol for IEEE 802.11 wireless networks. In BroadNets.Google Scholar
  15. 15.
    Li, J., Haas, Z. J., Sheng, M., & Chen, Y. (2003). Performance evaluation of modified IEEE 802.11 MAC for multi-channel multi-hop Ad Hoc network. In IEEE AINA 2003.Google Scholar
  16. 16.
    Jain, N., & Das, S. R. (2001). A multichannel CSMA MAC Protocol with receiver-based channel selection for multihop wireless networks. In IEEE IC3N.Google Scholar
  17. 17.
    Tzamaloukas, A., & Garcia-Luna-Aceves, J. J. (2001). A receiver-initiated collision-avoidance protocol for multi-channel networks. In IEEE INFOCOM.Google Scholar
  18. 18.
    Tang, Z., & Garcia-Luna-Aceves, J. J. (1999). Hop-reservation multiple access (HRMA) for Ad-Hoc networks. In IEEE INFOCOM.Google Scholar
  19. 19.
    Zhou, G., Wu, Y., Yan, T., He, T., Huang, C., Stankovic, J. A., & Abdelzaher, T. F. (2010). A multi-frequency MAC specially designed for wireless sensor network applications. In ACM TECS.Google Scholar
  20. 20.
    Wu, Y., Stankovic, J., He, T., Lu, J., & Lin, S. (2008). Realistic and efficient multi-channel communications in wireless sensor networks. In IEEE INFOCOM.Google Scholar
  21. 21.
    Zhou, G., Lu, J., Wan, C.-Y., Yarvis, M. D., & Stankovic, J. A. (2008). Bodyqos: Adaptive and radio-agnostic qos for body sensor networks. In INFOCOM.Google Scholar
  22. 22.
    Ren, Z., Zhou, G., Pyles, A., Keally, M., Mao, W., & Wang, H. (2011). Bodyt2: Throughput and time delay performance assurance for heterogeneous bsns. In INFOCOM.Google Scholar
  23. 23.
    Levis, P., Gay, D., Vlado, H., Hauer, J. H., Greenstein, B., Turon, M., et al. (2005). Technische Universitt Berlin, Crossbow Inc, and Arched Rock Corpration. T2: A second generation os for embedded sensor networks, Tech. Rep.Google Scholar
  24. 24.
    Polastre, J., Szewczyk, R., & Culler, D. (2005). Telos: Enabling ultra-low power wireless research. In ACM/IEEE IPSN/SPOTS.Google Scholar
  25. 25.
    Chang, J., & Maxemchuk, N. F. (1984). Reliable broadcast protocols. In ACM Transactions on computer systems.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Robert Thompson
    • 1
  • Gang Zhou
    • 1
    Email author
  • Lei Lu
    • 1
  • Sudha Krishnamurthy
    • 2
  • Hover Dong
    • 1
  • Xin Qi
    • 1
  • Yantao Li
    • 1
  • Matthew Keally
    • 1
  • Zhen Ren
    • 1
  1. 1.Computer Science DepartmentCollege of William and MaryWilliamsburgUSA
  2. 2.United Technologies Research CenterEast HartfordUSA

Personalised recommendations