Advertisement

Wireless Personal Communications

, Volume 67, Issue 3, pp 557–571 | Cite as

Performance Analysis of Space-Time Block Codes with Transmit Antenna Selection in Nakagami-m Fading Channels

  • Ahmet F. Coşkun
  • Oğuz Kucur
  • İbrahim Altunbaş
Article

Abstract

In this paper, multiple-input multiple-output systems employing space-time block codes (STBCs) with transmit antenna selection (TAS) are examined for flat Nakagami-m fading channels. Exact symbol error rate (SER) expressions for M-ary modulation techniques are derived by using the moment generating function based analysis method. In the SER analysis, the receiver is assumed to use maximal ratio combining whereas a subset of transmit antennas that maximizes the instantaneous received signal-to-noise ratio (SNR) is selected for STBC transmission. The analytical SER results are validated by Monte Carlo simulations. By deriving upper and lower bounds for SER expressions, it is shown that TAS/STBC schemes achieve full diversity orders at high SNRs.

Keywords

Space-time block codes (STBCs) Transmit antenna selection (TAS) Nakagami-m fading 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Telatar I. E. (1999) Capacity of multi-antenna Gaussian channels. Eur. Trans. Telecommun. 10: 585–595CrossRefGoogle Scholar
  2. 2.
    Alamouti S. M. (1998) A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun. 16: 1451–1458CrossRefGoogle Scholar
  3. 3.
    Tarokh V., Jafarkhani H., Calderbank A. R. (1999) Space-time block codes from orthogonal designs. IEEE Trans. Inf. Theory 45: 1456–1467MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Chen Z., Yuan J., Vucetic B. (2005) Analysis of transmit antenna selection/maximal-ratio combining in Rayleigh fading channels. IEEE Trans. Veh. Technol. 54: 1312–1321CrossRefGoogle Scholar
  5. 5.
    Gore D. A., Paulraj A. J. (2002) MIMO antenna subset selection with space-time coding. IEEE Trans. Sign. Process. 50: 2580–2588CrossRefGoogle Scholar
  6. 6.
    Yang L., Qin J. (2006) Performance of Alamouti scheme with transmit antenna selection for M-ary signals. IEEE Trans. Wirel. Commun. 5: 3365–3369CrossRefGoogle Scholar
  7. 7.
    Kaviani S., Tellambura C. (2006) Closed-form BER analysis for antenna selection using orthogonal space-time block codes. IEEE Commun. Lett. 10: 704–706CrossRefGoogle Scholar
  8. 8.
    Chen Z., Yuan J., Li Y., Vucetic B. (2009) Error performance of maximal-ratio combining with transmit antenna selection in flat Nakagami-m fading channels. IEEE Trans. Wirel. Commun. 8: 424–431CrossRefGoogle Scholar
  9. 9.
    Romero-Jerez J. M., Goldsmith A. J. (2009) Performance of multichannel reception with transmit antenna selection in arbitrarily distributed Nakagami-m fading channels. IEEE Trans. Wirel. Commun. 8: 2006–2013CrossRefGoogle Scholar
  10. 10.
    Coşkun, A. F., Kucur, O., & Altunbaş, İ (2010). Performance of space-time block codes with transmit antenna selection in Nakagami-m fading channels. EW 2010, Lucca, Italy, Apr. 12–15.Google Scholar
  11. 11.
    Chen Z., Vucetic B., Yuan J. (2005) Asymptotic performance of space-time block codes with imperfect transmit antenna selection. IET Electron. Lett. 41: 538–540CrossRefGoogle Scholar
  12. 12.
    Özdemir Ö., Altunbaş İ., Bayrak M. (2010) Performance of super-orthogonal space-time trellis codes with transmit antenna selection. IET Commun. 4: 1942–1951MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gradshteyn I., Ryzhik I. (1994) Tables of integrals, series and products. Academic, San DiegoGoogle Scholar
  14. 14.
    David H. A., Nagaraja H. N. (2003) Order statistics (3rd ed.). Wiley, New YorkzbMATHCrossRefGoogle Scholar
  15. 15.
    Simon M. K., Alouini M. S. (2005) Digital communications over fading channels. Wiley, New YorkGoogle Scholar
  16. 16.
  17. 17.
    Exton H. (1976) Multiple hypergeometric functions and applications. Wiley, New YorkzbMATHGoogle Scholar
  18. 18.
    Maaref A., Aïssa S. (2009) Exact error probability analysis of rectangular QAM for single- and multichannel reception in Nakagami-m fading channels. IEEE Trans. Commun. 57(1): 214–221CrossRefGoogle Scholar
  19. 19.
    Joshi C. M., Arya J. P. (1982) Inequalities for certain confluent hypergeometric functions of two variables. Indian J. Pure App. Math. 13: 491–500MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Ahmet F. Coşkun
    • 1
  • Oğuz Kucur
    • 1
  • İbrahim Altunbaş
    • 2
  1. 1.Electronics Engineering DepartmentGebze Institute of TechnologyGebze-KocaeliTurkey
  2. 2.Electronics and Communications Engineering Departmentİstanbul Technical UniversityMaslak-IstanbulTurkey

Personalised recommendations