Wireless Personal Communications

, Volume 66, Issue 4, pp 717–738 | Cite as

Passive Receiver Subsystems for Third Generation Cellular Networks

  • J. Vales-Alonso
  • F. J. González-Castaño
  • J. P. Muñoz-Gea
  • J. M. Pérez-Mañogil
  • J. J. Alcaraz


Cellular networks planning has been affected by restrictions in the placement inside urban areas. This burden is motivated by public complaints on adverse effects in humans’ health, despite the lack of conclusive scientific evidence. As a result, some regulations are enforcing base station placement at suburban locations aimed toward urban areas. With this configuration, network capacity is severely reduced and, paradoxically, users will suffer from a higher radio exposure since terminals must raise up their power to reach suburban base stations. In this work, we propose a feasible solution to improve network capacity under these restrictive placement regulations in the context of UMTS networks. We introduce a passive receiver subsystem located in the urban area, while the Node-B is kept at the suburban location. Thereby, the power received from the Node-B could be considered negligible inside the urban area (since the active part is far away), and user equipments would transmit at lower power levels (since passive receivers are close to them). The results in this paper reveal that our approach improves network capacity (up to 21%) and notably reduces electromagnetic exposure compared to suburban installations.


Base stations Cellular mobile communications Capacity EMF hazards UMTS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moulder, J. Cellular Phone Antennas (Mobile Phone Base Stations) and Human Health web site. [Online]. Available:
  2. 2.
    United Nations International EMF Project. [Online]. Available:
  3. 3.
    El mundo newspaper “Quinto caso de cáncer infantil en el colegio García Quintana” (Fifth case of children cancer in the García Quintana school). [Online]. Available:
  4. 4.
    Townsend, D. A. “Report On: the National Antenna Tower Policy Review,” Industry Canada Registration Number 54220B. [Online]. Available:
  5. 5.—Raising awareness of the harmful effects of cellphone masts. [Online]. Available:
  6. 6.
    The International Commission on Non-Ionizing Radiation Protection. ICNIRP. [Online]. Available:
  7. 7.
    Ayuntamiento de Santiago de Compostela (Santiago de Compostela Town Council), Plan General de Ordenación Urbanística de Santiago (General Urbanization Plan of Santiago), Chapter VIII, Article 194.Google Scholar
  8. 8.
    Ayuntamiento de León (León Town Council), Moción instando al gobierno de la nación a que reduzca al menos en un 50% los niveles de intensidad de campo eléctrico de referencia y los correspondientes límites de exposición a las emisiones radioeléctricas recogidos en el Real Decreto 1066/2001 (Proposal requesting the national government at least a 50% decrease in the reference levels of electrical field intensity and the corresponding limits of exposure to radioelectric emissions indicated in Real Decree 1066/2001), approved March 31 2006.Google Scholar
  9. 9.
    Salford G., Brun A., Eberhardt J., Malmgren L., Persson B. (2003) Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environmental Health Perspectives 111(7): 881–883CrossRefGoogle Scholar
  10. 10.
    Reuters. (2004, Dec.). Study: Cell phones scramble DNA. [Online]. Available:
  11. 11.
    Adlkofer F. et al (2004) Final summary offered for Europe’s REFLEX project. The Bioelectromagnetics Society Newsletter 181(6): 6–6Google Scholar
  12. 12.
    Michelozzi P., Capon A., Kirchmayer U., Forastiere F., Biggeri A., Barca A. et al (2002) Adult and childhood leukemia near a high-power radio station in Rome, Italy. American Journal of Epidemiology 155(12): 1096–1103CrossRefGoogle Scholar
  13. 13.
    Marinelli F., La Sala D., Cicciotti G., Cattini L., Trimarchi C., Putti S. et al (2002) Exposure to 900 MHz electromagnetic field induces an unbalance between pro-apoptotic and pro-survival signals in T-lymphoblastoid leukemia CCRF-CEM cells. Journal of Cellular Physiology 198(2): 324–332CrossRefGoogle Scholar
  14. 14.
    Ahlbom A., Green A., Kheifets L., Savitz D., Swerdlow A. (2004) Epidemiology of health effects of radiofrequency exposure. Environmental Health Perspectives 112(17): 1741–1754CrossRefGoogle Scholar
  15. 15.
    Schuz J. (2005) Mobile phone use and exposures in children. Bioelectromagnetics 26(S7): S45–S50CrossRefGoogle Scholar
  16. 16.
    Schuz J., Ahlbom A. (2008) Exposure to electromagnetic fields and the risk of childhood leukaemia: A review. Radiation Protection Dosimetry 132(2): 202–211CrossRefGoogle Scholar
  17. 17.
    Mobile inSite. (2010). Changes to federal laws proposed to restrict mobile phone towers near schools. [Online]. Available:
  18. 18.
    No Towers Near Schools - Protecting our Children. [Online]. Available:
  19. 19.
    Resistance against cell phone towers at schools rises in Hillsborough. (2009). [Online]. Available:
  20. 20.
    Eliminating Cell Towers at schools—No Towers at Schools. [Online]. Available:
  21. 21.
    Facebook community against cell phone towers on schools. [Online]. Available:
  22. 22.
    MCD against cell phone towers in residential areas. (2010). [Online]. Available:
  23. 23.
    Tougher cell phone tower regulations in New York State beginning today (2010). [Online]. Available:
  24. 24.
    Laudio aleja del centro las antenas de telefonia. (2010). [Online]. Available:
  25. 25.
    García-Sánchez M., Cuiñas I., Vázquez-Alejos A. (2005) Electromagnetic field level temporal variation in urban areas. Electronics Letters 41(5): 233–234CrossRefGoogle Scholar
  26. 26.
    Cuiñas I., García-Pino A., García-Sánchez M., Arias M., Alonso A.A. (2004) Fixing limits to free-access areas around broadcast antennas. IEEE Transactions on Antennas and Propagation 52(10): 2802–2806CrossRefGoogle Scholar
  27. 27.
    Vales-Alonso J., González-Castaño F.J., Muñoz-Gea J.P., García-Haro J., Muñoz-Gutiérrez L., Gil-Castiñeira F.J. (2011) Decoupled active/passive base stations for second generation cellular networks. Wireless Personal Communications 56(2): 255–275CrossRefGoogle Scholar
  28. 28.
    Patwary, M. N., Rapajic, P. B., & Oppermann, I. (2005). Capacity and coverage increase with repeaters in UMTS urban cellular mobile communication environment. IEEE Transactions on Communications, 53(10).Google Scholar
  29. 29.
    Hiltunen, K. (2006). Using RF repeaters to improce WCDMA speech coverage and capacity inside buildings. In Proceedings of 64th Vehicular Technology Conference - VTC 2006 Fall (pp. 1–5).Google Scholar
  30. 30.
    Pabst R., Walke B.H., Schultz D., Herhold P., Yanikomeroglu H., Mukherjee S. et al (2004) Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Communications Magazine 42(9): 80–89CrossRefGoogle Scholar
  31. 31.
    Zhang, Z. (2004). On the application of directional antenna to two hop relay system. In Proceedings of 65th IEEE Vehicular Technology Conference - VTC 2007-Spring (pp. 3130–3134).Google Scholar
  32. 32.
    3rd generation partnership project (3GPP). [Online]. Available:
  33. 33.
    3GPP (TS 25.101) Universal Mobile Telecommunications System (UMTS); Group Radio Access Network; UE Radio Transmission and Reception (FDD). Technical Specification 25.101 v25.101 v. 7.5.0.Google Scholar
  34. 34.
    Holma H., Toskala A. (2000) WCDMA for UMTS radio access for third generation mobile communications. Wiley, New YorkGoogle Scholar
  35. 35.
    3GPP (TS 25.331) Universal Mobile Telecommunications System (UMTS); Radio Resource Control (RRC) protocol specification. Technical Specification 25.331 v. 3.10.0.Google Scholar
  36. 36.
    3GPP (TS 25.214) Universal Mobile Telecommunications System (UMTS); Physical layer procedures (FDD). Technical Specification 25.214 v. 7.1.0.Google Scholar
  37. 37.
    Gunnarsson F., Gustafsson F., Blom J. (2001) Dynamical effects of time delays and time delay compensation in power controlled DS-CDMA. IEEE Journal on Selected Areas in Communications 19(1): 141–151CrossRefGoogle Scholar
  38. 38.
    Nawrocki M. J., Dohler M., Aghvami A. H. (2006) Understanding UMTS radio network: Modelling, planning and automated optimisation. Wiley, New YorkCrossRefGoogle Scholar
  39. 39.
    Baumann J., Landstorfer F.M., Geisbusch L., Georg R. (2006) Evaluation of radiation exposure by UMTS mobile phones. Electronics Letters 42(4): 225–226CrossRefGoogle Scholar
  40. 40.
    OPNET Modeler. [Online]. Available:
  41. 41.
    OPNET UMTS model. [Online]. Available:
  42. 42.
    Rappaport, T. S. (2002). Wireless Communications, Principles and Practice (2nd ed.). : Printence Hall.Google Scholar
  43. 43.
    OPNET contributed models. [Online]. Available:
  44. 44.
    International Telecommunication Union, ITU. Recommendation ITU-R M.1225 Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000, 1997.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • J. Vales-Alonso
    • 1
  • F. J. González-Castaño
    • 2
  • J. P. Muñoz-Gea
    • 1
  • J. M. Pérez-Mañogil
    • 1
  • J. J. Alcaraz
    • 1
  1. 1.Department of Information Technologies and CommunicationsTechnical University of CartagenaCartagenaSpain
  2. 2.Department of Telematics EngineeringUniversity of VigoVigoSpain

Personalised recommendations