Wireless Personal Communications

, Volume 63, Issue 1, pp 261–278 | Cite as

Towards Unique and Anchor-Free Localization for Wireless Sensor Networks

Article

Abstract

Despite a large number of approaches developed for wireless sensor network (WSN) localization, there are still many unsolved problems in this area. The challenges to be addressed are both in analyzing characteristics of the localizable WSNs and designing efficient localization algorithms under a variety of conditions. In this paper we first draw on powerful results from graph rigidity theory and combinatorial theory, revealing that the combination of distance constraint and bearing constraint leads to necessary and sufficient condition for unique localization. This enlightens our proposing an anchor-free and computationally simple ad hoc localization algorithm for WSNs. A novel combination of distance and direction estimation technique is introduced to detect and estimate ranges between neighbors. Using this information we construct unidirectional local coordinate systems to avoid the reflection ambiguity. Such local maps then converge to form a global network wide coordinate system using a transformation matrix [T], which finally leads to node absolute positions. Simulation results have shown that our algorithm achieves high accuracy without using any error refining schemes.

Keywords

Unique localization analysis Anchor-free Transformation matrix Wireless sensor network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz I. F., Su W., Sankarasubramaniam Y., & Cayirci E. (2002) Wireless sensor networks: a survey. Computer Networks 38(4): 393–422CrossRefGoogle Scholar
  2. 2.
    Priyantha, N. B., Miu, A. K. L., Balakrishnan, H., & Teller, S. (2001). The cricket compass for context-aware mobile applications. Proceedings Annual ACM International Conference on Mobile Computing and Networking, 1–14.Google Scholar
  3. 3.
    Guvenc, I., Gezici, S., & Sahinoglu, Z. (2008). Ultra-wideband range estimation: theoretical limits and practical algorithms. Proceedings of the IEEE International Conference on Ultra-Wideband, 93–96.Google Scholar
  4. 4.
    Godara L. C. (1997) Application of antenna arrays to mobile communications. II. beam-forming and direction-of-arrival considerations. Proceedings of the IEEE 85(8): 1195–1245CrossRefGoogle Scholar
  5. 5.
    Niculescu, D., & Nath, B. (2003). Ad hoc positioning system (APS) using AOA. Proceedings of the IEEE International Conference on Computer Communications, 3, 1734–1743.Google Scholar
  6. 6.
    Shih K. P., Wang S. S. (2007) Distributed direction-based localization in wireless sensor networks. Computer Communications 30(6): 1424–1439CrossRefGoogle Scholar
  7. 7.
    Stefano G. D., Petricola A. (2008) A distributed AOA based localization algorithm for wireless sensor networks. Journal of Computers 3(4): 1–8MATHCrossRefGoogle Scholar
  8. 8.
    Savvides, A., Han, C. C., & Srivastava, M. (2001). Dynamic fine-grained localization in ad-hoc networks of sensors. Proceedings of the IEEE/ACM Annual Conference on Mobile Computing and Networks 166–179.Google Scholar
  9. 9.
    Capkun S., Hamdi M., Hubaux J. (2002) GPS-free positioning in mobile ad-hoc networks. Cluster Computing 5: 157–167CrossRefGoogle Scholar
  10. 10.
    Iyengar, R., & Sikdar, B. (2003). Scalable and distributed GPS free positioning for sensor networks. Proceedings of the IEEE International Conference on Communications, 1, 338–342.Google Scholar
  11. 11.
    Cheng, X., Thaeler, A., Xue, G., & Chen, D. (2004). TPS: a time-based positioning scheme for outdoor sensor networks. Proceedings of the IEEE International Conference on Computer Communications, 4, 2685–2696.Google Scholar
  12. 12.
    Moore, D., Leonard, J., Rus, D., & Teller, S. (2004). Robust distributed network localization with noisy range measurements. Proceedings of the ACM Conference on Embedded Networked Sensor Systems, 50–61.Google Scholar
  13. 13.
    Youssef, A., & Agrawala, A. (2005). Accurate anchor-free node localization in wireless sensor networks. Proceedings of the IEEE International Performance Computing and Communications Conference, 465–470.Google Scholar
  14. 14.
    Wen, C. Y., & Hsiao, Y. C. (2008). Decentralized anchor-free localization for wireless ad-hoc sensor networks. Proceedings of the IEEE International Conference on System, Man, and Cybernetic, 2776–2784.Google Scholar
  15. 15.
    Boushaba M., Hafid A., Benslimane A. (2009) High accuracy localization method using AoA in sensor networks. Computer Networks 53(18): 3076–3088MATHCrossRefGoogle Scholar
  16. 16.
    Mao G., Fidan B., Anderson B. D. O. (2007) Wireless sensor network localization techniques. Computer Networks 51(10): 2529–2553MATHCrossRefGoogle Scholar
  17. 17.
    Bal, M., Liu, M., Shen, W., & Ghenniwa, H. (2009). Localization in cooperative wireless sensor networks: a review. Proceedings of the IEEE International Conference on Computer Supported Cooperative Work in Design, 438–443.Google Scholar
  18. 18.
    Aspnes J., Eren T., Goldenberg D. K., Morse A. S., Whiteley W., Yang Y. R. et al (2006) A theory of network localization. IEEE Transactions on Mobile Computing 5(12): 1663–1678CrossRefGoogle Scholar
  19. 19.
    Connelly R. (2005) Generic global rigidity. Discrete & Computational Geometry 33(4): 549–563MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Roth B. (1981) Rigid and flexible frameworks. American Mathematical Monthly 88(1): 6–21MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Jackson B., Jordán T. (2010) Globally rigid circuits of the direction-length rigidity matroid. Journal of Combinatorial Theory, Series B 100(1): 1–22MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Even S., Tarjan R. E. (1975) Network flow and testing graph connectivity. SIAM Journal on Computing 4: 507–518MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Esfahanian A. H., Hakimi S. L. (1984) On computing the connectivities of graphs and digraphs. Networks 14: 355–366MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Henzinger, M. R., Rao, S., & Gabow, H. N. (1996). Computing vertex connectivity: new bounds from old techniques. Proceedings of the IEEE Annual Symposium on Foundations of Computer Science, 462–471.Google Scholar
  25. 25.
    Kannan, A. A., Fidan, B., & Mao, G. (2008). Robust distributed sensor network localization based on analysis of flip ambiguities. Proceedings of the IEEE Global Telecommunications Conference, 1–6.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Network Based Intelligent ComputingJinanChina
  2. 2.School of Control Science and EngineeringShandong UniversityJinanChina

Personalised recommendations