Advertisement

Wireless Personal Communications

, Volume 58, Issue 1, pp 71–93 | Cite as

Collaborative and Cognitive Network Platforms: Vision and Research Challenges

  • Ertan Onur
  • Yunus Durmus
  • Mohamed Gamal Hawas
  • Sonia Marcela Heemstra de Groot
  • Ignas G. M. M. Niemegeers
Open Access
Article

Abstract

In this paper, we present a visionary concept referred to as Collaborative and Cognitive Network Platforms (CCNPs) as a future-proof solution for creating a dependable, self-organizing and self-managing communication substrate for effective ICT solutions to societal problems. CCNP creates a cooperative communication platform to support critical services across a range of business sectors. CCNP is based on the personal network (PN) technology which is an inherently cooperative environment prototyped in the Dutch Freeband PNP2008 and the European Union IST MAGNET projects. In CCNP, the cognitive control plane strives to exploit the resources to better satisfy the requirements of networked applications. CCNP facilitates collaboration inherently. Through cognition in the cognitive control plane, CCNP becomes a self-managed substrate. The self-managed substrate, in this paper, is defined as cognitive and collaborative middleware on which future applications run without user intervention. Endemic sensor networks may be incorporated into the CCNP concept to feed its cognitive control plane. In this paper, we present the CCNP concept and discuss the research challenges related to collaboration and cognition.

Keywords

Cognition Collaboration Personal networks Knowledge-based control Cognitive control Cooperative communications Wake-up receivers 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. Onur, E., Deliç, H., Ersoy, C., & Caglayan, M. (2002). On the retrial and redial phenomena in GSM networks. In IEEE wireless communications and networking conference (Vol. 2, pp. 885–889).Google Scholar
  2. Bur K., Ersoy C.: Ad hoc quality of service multicast routing. Computer Communications 29(1), 136–148 (2005)CrossRefGoogle Scholar
  3. Jefferies, N. (2007). Global vision for a wireless world. In 18th wireless world research forum meeting, Helsinki, Finland.Google Scholar
  4. Jacobsson M., Niemegeers I., de Groot S. H.: Personal networks: Wireless networking for personal devices. Wiley, New York (2010)CrossRefGoogle Scholar
  5. Fortuna C., Mohorcic M.: Trends in the development of communication networks: Cognitive networks. Computer Networks 53(9), 1354–1376 (2009)CrossRefGoogle Scholar
  6. Onur, E., Jacobsson, M., de Groot, S. H., & Niemegeers, I. (2008). Manageable bubbles of the future Internet: Personal virtual super devices. In Wireless World Research Forum.Google Scholar
  7. Onur E., Ersoy C., Delic H.: Quality of deployment in surveillance wireless sensor networks. International Journal of Wireless Information Networks 12(1), 61–67 (2005)CrossRefGoogle Scholar
  8. Rainie, L., Fox, S., & Anderson, J. (2005). The future of the Internet.Google Scholar
  9. Tu Y.: How robust is the Internet?. Nature 406, 353–354 (2000)CrossRefGoogle Scholar
  10. Sagarin R.D., Alcorta C.S., Atran S., Blumstein D.T., Dietl G.P., Hochberg M.E. et al.: Decentralize, adapt and cooperate. Nature 465, 292–293 (2010)CrossRefGoogle Scholar
  11. Thomas R. W., Friend D. H., DaSilva L. A., MacKenzie A. B.: Cognitive networks: Adaptation and learning to achieve end-to-end performance objectives. IEEE Communications Magazine 44(12), 51–57 (2006)CrossRefGoogle Scholar
  12. Ohtsuki H., Hauert C., Lieberman E., Nowak M. A.: A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505 (2006)CrossRefGoogle Scholar
  13. Keller L., Reeve H. K.: Familiarity breeds cooperation. Nature 394, 121–122 (1998)CrossRefGoogle Scholar
  14. Taylor P. D., Day T.: Behavioural evolution: Cooperate with thy neighbour?. Nature 428, 611–612 (2004)CrossRefGoogle Scholar
  15. Mesterton-Gibbons M.: Why fairness pays. Nature 464, 1280 (2010)CrossRefGoogle Scholar
  16. IETF, Problem statement for cross-layer optimization. Internet Draft, Status: Informational, Expires: January 2011, July 12, 2010. [Online]. Available: http://tools.ietf.org/html/draft-lee-cross-layer-optimization-problem-01.
  17. Zhou, J., Jacobsson, M., Onur, E., & Niemegeers, I. (2010). An investigation of link quality assessment for mobile multi-hop and multi-rate wireless networks. Wireless Personal Communication. doi: 10.1007/s11277-011-0263-1.
  18. Kwon T., Lee H., Choi S., Kim J., Cho D.-H. et al.: Design and implementation of a simulator based on a cross-layer protocol between mac and phy layers in a wibro compatible. IEEE 802.16e OFDMA system. IEEE Communication Magazine 43(12), 136–146 (2005)CrossRefGoogle Scholar
  19. Clausen, T., Jacquet, P., Adjih, C., Laouiti, A., Minet, P., Muhlethaler, P., et al. (2003). Optimized link state routing protocol OLSR. IETF RFC.Google Scholar
  20. Shakkottai S., Rappaport T., Karlsson P.: Cross-layer design for wireless networks. IEEE Communications Magazine 41(10), 74–80 (2003)CrossRefGoogle Scholar
  21. Demirkol I., Ersoy C., Onur E.: Wake-up receivers for wireless sensor networks: Benefits and challenges. Wireless Communications, IEEE 16(4), 88–96 (2009)CrossRefGoogle Scholar
  22. Genç Z., Rizvi U. H., Onur E., Niemegeers I.: Cooperative communications in future home networks. Wireless Personal Communication 53(3), 349–364 (2010)CrossRefGoogle Scholar
  23. Moh, S., & Yu, C. (2010). A cooperative diversity-based robust mac protocol in wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 99, 1.Google Scholar
  24. Park, T., Kim, M., Kim, C., & Jung, J. (2010). A cooperative communication system using cross-layer coding method base on hybrid-arq. Second international conference on ubiquitous and future networks (ICUFN), pp. 145–149.Google Scholar
  25. Genc, Z., Olcer, G. M., Onur, E., & Niemegeers, I. (2010). Improving 60 ghz indoor connectivity with relaying. In Proceedings of IEEE international communications conference (ICC), pp. 1–6.Google Scholar
  26. Singh S., Ziliotto F., Madhow U., Belding E., Rodwell M.: Blockage and directivity in 60 GHz wireless personal area networks: From cross-layer model to multihop mac design. IEEE Journal on Selected Areas in Communications 27(8), 1400–1413 (2009)CrossRefGoogle Scholar
  27. Fan, Z. (2008). Wireless networking with directional antennas for 60 GHz systems. In Proceedings of 14th European wireless conference (EW), pp. 1–7.Google Scholar
  28. Chandrasekhar V., Andrews J., Gatherer A.: Femtocell networks: A survey. IEEE Communications Magazine 46(9), 59–67 (2008)CrossRefGoogle Scholar
  29. Claussen H., Ho L. T. W., Samuel L. G.: An overview of the femtocell concept. Bell Labs Technical Journal 13(1), 221–245 (2008)CrossRefGoogle Scholar
  30. [Online]. Available: http://www.femtoforum.org.
  31. Marron, P., Karnouskos, S., Minder, D., et al. (2009). Research roadmap on cooperating objects. The CONET Consortium.Google Scholar
  32. Lin, E.-Y., Rabaey, J., & Wolisz, A. (2004). Power-efficient rendez-vous schemes for dense wireless sensor networks (Vol. 7, pp. 3769–3776).Google Scholar
  33. Onur E., Ersoy C., Delic H., Akarun L.: Coverage in sensor networks when obstacles are present. IEEE International Conference on Communications 9, 4077–4082 (2006)CrossRefGoogle Scholar
  34. Neisser U.: Cognitive psychology. Appleton-Century-Crofts, New York (1967)Google Scholar
  35. Mitola, J., et al. (2000). Cognitive radio: an integrated agent architecture for software defined radio. Ph.D. dissertation.Google Scholar
  36. Best J.: Cognitive psychology. West Publishing Co, New York (1986)Google Scholar
  37. Thomas, R., DaSilva, L., & MacKenzie, A. (2005). Cognitive networks. In First IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005, pp. 352–360.Google Scholar
  38. Clark, D. D., Partridge, C., Ramming, J. C., & Wroclawski, J. T. (2003). A knowledge plane for the internet. In Proceedings of the 2003 conference on applications, technologies, architectures, and protocols for computer communications. ACM, New York, NY, USA, pp. 3–10.Google Scholar
  39. Mbaye, M., & Krief, F. (2009). A collaborative knowledge plane for autonomic networks. In Autonomic communication.Springer, New York, US, pp. 69–92.Google Scholar
  40. Manoj B., Rao R., Zorzi M.: CogNet: A cognitive complete knowledge network system. IEEE Wireless Communications 15(6), 81–88 (2008)CrossRefGoogle Scholar
  41. Mähönen, P., Petrova, M., Riihijärvi, J., & Wellens, M. (2006). Cognitive wireless networks: Your network just became a teenager. In Proceedings of IEEE INFOCOM 2006.Google Scholar
  42. Friend, D., EINainay, M., Shi, Y., & MacKenzie, A. (2008). Architecture and performance of an island genetic algorithm-based cognitive network. In Consumer communications and networking conference, 2008. CCNC 2008. 5th IEEE, pp. 993–997.Google Scholar
  43. Fortuna, C., & Mohorcic, M. (2008). Advanced access architecture for efficient service delivery in heterogeneous wireless networks. In Third international conference on communications and networking in China, 2008. ChinaCom 2008, pp. 1173–1177.Google Scholar
  44. Strassner, J. (2007). In Q. H. Mahmoud (Ed.), The role of autonomic networking in cognitive networks. Wiley, New York.Google Scholar
  45. Sutton, P., Doyle, L. E., & Nolan, K. E. (2006). A reconfigurable platform for cognitive networks. In 1st International conference on cognitive radio oriented wireless networks and communications, pp. 1–5.Google Scholar
  46. Onur, E., Sfakianakis, E., Papagianni, C., Karagiannis, G., Kontos, T., Niemegeers, I. et al. (2009). Intelligent end-to-end resource virtualization using service oriented architecture. In Proceedings of IEEE GLOBECOM workshops, pp. 1–6.Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Ertan Onur
    • 1
  • Yunus Durmus
    • 1
  • Mohamed Gamal Hawas
    • 1
  • Sonia Marcela Heemstra de Groot
    • 1
  • Ignas G. M. M. Niemegeers
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations