Wireless Personal Communications

, Volume 65, Issue 3, pp 601–616 | Cite as

The Impact of Shadowing and the Severity of Fading on the First and Second Order Statistics of the Capacity of OSTBC MIMO Nakagami-Lognormal Channels

Article

Abstract

This article presents a thorough statistical analysis of the capacity of orthogonal space-time block coded (OSTBC) multiple-input multiple-output (MIMO) Nakagami- lognormal (NLN) channels. The NLN channel model allows to study the joint effects of fast fading and shadowing on the statistical properties of the channel capacity. We have derived exact analytical expressions for the probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades (ADF) of the capacity of MIMO NLN channels. It is observed that an increase in the MIMO dimension or a decrease in the severity of fading results in an increase in the mean channel capacity, while the variance of the channel capacity decreases. On the other hand, an increase in the shadowing standard deviation increases the spread of the channel capacity, however the shadowing effect has no influence on the mean channel capacity. We have also presented approximation results for the statistical properties of the channel capacity, obtained using the Gauss-Hermite integration method. It is observed that approximation results not only reduce the complexity, but also have a very good fitting with the exact results. The presented results are very useful and general because they provide the flexibility to study the impact of shadowing on the channel capacity under different fading conditions. Moreover, the effects of severity of fading on the channel capacity can also be studied. The correctness of theoretical results is confirmed by simulations.

Keywords

Nakagami-lognormal channels MIMO Land mobile terrestrial channels Channel capacity Shadowing effects Level-crossing rate Average duration of fades 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zheng L., Tse D. N. C. (2003) Diversity and multiplexing: A fundamental tradeoff in multiple antenna channels. IEEE Transactions on Information Theory 49: 1073–1096MATHCrossRefGoogle Scholar
  2. 2.
    Tarokh V., Seshadri N., Calderbank A. R. (1998) Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory 44(2): 744–765MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Alamouti S. M. (1998) A simple transmit diversity technique for wireless communications. IEEE Journal on Selected areas in Communications 16(8): 1451–1458CrossRefGoogle Scholar
  4. 4.
    Tarokh V., Jafarkhani H., Calderbank A. R. (1999) Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 45(5): 1456–1467MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Larsson E. G., Stoica P. (2003) Space-time block coding for wireless communications. Cambridge University Press, New York, NYMATHCrossRefGoogle Scholar
  6. 6.
    Chen J., Du Z., Gao X. (2008) Approximate capacity of OSTBC-OFDM in spatially correlated MIMO Nakagami-m fading channels. Electronics Letters 44(8): 534–535CrossRefGoogle Scholar
  7. 7.
    Musavian L., Dohler M., Nakhai M. R., Aghvami M. H. (2004) Closed-form capacity expressions of orthogonalized correlated MIMO channels. IEEE Communications Letters 8(6): 365–367CrossRefGoogle Scholar
  8. 8.
    Yang L. (2008) Outage performance of OSTBC in double scattering MIMO channels. Wireless Personal Communications 45(2): 225–230CrossRefGoogle Scholar
  9. 9.
    Zhang H., Gulliver T. A. (2005) Capacity and error probability analysis for orthogonal space-time block codes over fading channels. IEEE Transaction on Wireless Communications 4(2): 808–819CrossRefGoogle Scholar
  10. 10.
    Maaref A., Aïssa S. (2006) Performance analysis of orthogonal space-time block codes in spatially correlated MIMO Nakagami fading channels. IEEE Transaction on Wireless Communications 5(4): 807–817CrossRefGoogle Scholar
  11. 11.
    Rafiq, G., Pätzold, M., & Kontorovich, V. (2009). The influence of spatial correlation and severity of fading on the statistical properties of the capacity of OSTBC Nakagami-m MIMO channels. In Proceedings IEEE 69th vehicular technology conference, IEEE VTC 2009-Spring. Barcelona, Spain.Google Scholar
  12. 12.
    Jakes, W. C. (eds) (1994) Microwave mobile communications. IEEE Press, Piscataway, NJGoogle Scholar
  13. 13.
    Stüber G. L. (2001) Principles of mobile communications. Kluwer Academic Publishers, Boston, MAGoogle Scholar
  14. 14.
    Pätzold M., Killat U., Laue F. (1998) An extended Suzuki model for land mobile satellite channels and its statistical properties. IEEE Transactions on Vehicular Technology 47(2): 617–630CrossRefGoogle Scholar
  15. 15.
    Tjhung T. T., Chai C. C. (1999) Fade statistics in Nakagami-lognormal channels. IEEE Transactions on Communications 47(12): 1769–1772CrossRefGoogle Scholar
  16. 16.
    Ramos, F., Kontorovitch, V. Y., & Lara, M. (2000). Generalization of Suzuki model for analog communication channels. In Proceedings IEEE antennas and propagation for wireless communication, IEEE APS 2000 (pp. 107–110).Google Scholar
  17. 17.
    Nakagami M. (1960) The m-distribution: A general formula of intensity distribution of rapid fading. In: Hoffman W. G. (eds) Statistical methods in radio wave propagation. Pergamon Press, Oxford, UKGoogle Scholar
  18. 18.
    Yacoub M. D., Vargas J. E. B., de Guedes L. G. R. (1999) On higher order statistics of the Nakagami-m distribution. IEEE Transactions on Vehicular Technology 48(3): 790–794CrossRefGoogle Scholar
  19. 19.
    Shen Z., Heath R. W. Jr., Andrews J. G., Evans B. L. (2006) Space-time water-filling for composite MIMO fading channels. EURASIP Journal on Wireless Communications and Networking 2006(2): 48–48Google Scholar
  20. 20.
    Yang L. (2007) Outage performance of OSTBC in MIMO channels with shadowing. Wireless Personal Communications 43(4): 1751–1754CrossRefGoogle Scholar
  21. 21.
    Salzer H. E., Zucker R., Capuano R. (1952) Table of the zeros and weight factors of the first twenty hermite polynomials. Journal of Research of the National Bureau of Standards 48: 111–116MathSciNetGoogle Scholar
  22. 22.
    Gradshteyn I. S., Ryzhik I. M. (2000) Table of integrals, series, and products. Academic Press, New YorkMATHGoogle Scholar
  23. 23.
    Pätzold, M., & Yang, K. (2006). An exact solution for the level-crossing rate of shadow fading processes modelled by using the sum-of-sinusoids principle. In Proceedings 9th international symposium on wireless personal multimedia communications, WPMC 2006 (pp. 188–193). San Diego, USA.Google Scholar
  24. 24.
    Paulraj A. J., Nabar R., Gore D. (2003) Introduction to space-time wireless communications. Cambridge University Press, Cambridge, UKGoogle Scholar
  25. 25.
    Alouini M.-S., Abdi A., Kaveh M. (2001) Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels. IEEE Transactions on Vehicular Technology 50(6): 1471–1480CrossRefGoogle Scholar
  26. 26.
    Papoulis A., Pillai S. U. (2002) Probability, random variables and stochastic processes. McGraw-Hill, New YorkGoogle Scholar
  27. 27.
    Yacoub M. D., da Silva C. R. C. M., Vargas Bautista J. E. (2001) Second-order statistics for diversity-combining techniques in Nakagami-fading channels. IEEE Transactions on Vehicular Technology 50(6): 1464–1470CrossRefGoogle Scholar
  28. 28.
    Krantzik A., Wolf D. (1990) Distribution of the fading-intervals of modified Suzuki processes. In: Torres L., Masgrau E., Lagunas M. A. (eds) Signal processing V: Theories and applications. Elsevier Science Publishers, B.V, Amsterdam, The Netherlands, pp 361–364Google Scholar
  29. 29.
    Hogstad, B. O., & Pätzold, M. (2007). Exact closed-form expressions for the distribution, level-crossing rate, and average duration of fades of the capacity of MIMO channels. In Proceedings 65th semiannual vehicular technology conference, IEEE VTC 2007-Spring (pp. 455–460). Dublin, Ireland.Google Scholar
  30. 30.
    Pätzold M. (2002) Mobile fading channels. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  31. 31.
    Giorgetti A., Smith P. J., Shafi M., Chiani M. (2003) MIMO capacity, level crossing rates and fades: The impact of spatial/temporal channel correlation. Journal of Communications and Networks 5(2): 104–115Google Scholar
  32. 32.
    Wang H. S., Moayeri N. (1995) Finite-state Markov channel—a useful model for radio communication channels. IEEE Transactions on Vehicular Technology 44(1): 163–171CrossRefGoogle Scholar
  33. 33.
    Vijayan, R., & Holtzman, J. M. (1993). Foundations for level crossing analysis of handoff algorithms. In Proceedings IEEE international conference on communications, ICC 1993 (pp. 935–939). Geneva, Switzerland.Google Scholar
  34. 34.
    Lai, J., & Mandayam, N. B. (1998). Packet error rate for burst-error-correcting codes in Rayleigh fading channels. In Proceedings of the IEEE 48th vehicular technology conference, VTC’98. Ottawa, Ontario, Canada.Google Scholar
  35. 35.
    Abramowitz M., Stegun I. A. (1984) Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards, WashingtonMATHGoogle Scholar
  36. 36.
    Gudmundson M. (1991) Correlation model for shadow fading in mobile radio systems. Electronics letters 27(23): 2145–2146CrossRefGoogle Scholar
  37. 37.
    Pätzold M., Wang C. X., Hogstad B. O. (2009) Two new sum-of-sinusoids-based methods for the efficient generation of multiple uncorrelated Rayleigh fading waveforms. IEEE Transactions on Wireless Communications 8(6): 3122–3131CrossRefGoogle Scholar
  38. 38.
    Rice S. O. (1944) Mathematical analysis of random noise. Bell System Technical Journal 23: 282–332MathSciNetMATHGoogle Scholar
  39. 39.
    Rice S. O. (1945) Mathematical analysis of random noise. Bell System Technical Journal 24: 46–156MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Department of Information and Communication Technology, Faculty of Engineering and ScienceUniversity of AgderGrimstadNorway

Personalised recommendations