Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Prunable Collision Free Random Interleaver Design

Abstract

In this article we introduce a new collision free prunable random interleaver. The suggested interleaver is a joint structure involving rectangular and S-random interleaver. It comprises a general model for all kind of collision free prunable random interleavers. In addition, it can be designed for any number of parallel processors and any length of information sequence vector and can be considered also as a template for collision free prunable interleavers. The proposed interleaver can be used with all kind of turbo-like codes. The performance of the proposed interleaver is measured with parallel decodable serially concatenated convolutional codes (PDSCCCs) and compared to the PDSCCCs’ performance with collision full S-random interleaver.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Berrou, C., Glavieux, A., & Thitimajshima, P. (1993). Near shannon limit error-correcting coding and decoding: Turbo codes. In Proceedings of IEEE international conference on communications, vol. 2 (pp. 1064–1070). Geneva, Switzerland.

  2. 2

    Benedetto S., Montorsi G. (1996) Serial concatenation of block and convolutional codes. Electronics Letters 32: 887–888

  3. 3

    Gallager R. G. (1962) Low density parity check codes. IRE Transactions on Information Theory 8: 21–28

  4. 4

    Dobkin, R., Peleg, M., & Ginosar, R. Parallel VLSI architectures and parallel interleaving design for low-latency MAP turbo decoders. Technical Report CCIT-TR436.

  5. 5

    Gazi, O., & Yılmaz A. O. (2007). On parallelized concatenated codes. Proceedings of IEEE Wireless Communications and Networking Conference. Hong Kong. 11–15 March 2007.

  6. 6

    Kwak J., Lee K. (2002) Design of dividable interleaver for parallel decoding in turbo codes. Electronics Letters 38(22): 1362–1364

  7. 7

    Ferrari, M., Scalise, F., & Bellini, S. (2002). Prunable S-random interleavers. In Proceedings of IEEE international conference on communications, vol. 3 (pp. 1711–1715). New York. 28 April–2 May 2002.

  8. 8

    Dinoi L., & Benedetto S. Design of fast-prunable S-random interleavers. IEEE Transactions on Wireless Communications, 4(5), 2540–2548.

  9. 9

    Berrou, C., Saouter, Y., Douillard, C., Kerouedan, S., & Jezequel, M. (2004). Designing good permutations for turbo codes: Towards a single model. In Proceedings of IEEE international conference on communications, vol. 1 (pp. 341–345). June 2004

  10. 10

    Sun J., Takeshita O. (2005) Interleavers for turbo codes using permutation polynomials over integer rings. IEEE Transactions on Information Theory 51: 101–119

  11. 11

    Berrou, C., Glavieux, A., & Thitimajshima, P. (2003). Distance upper bounds and true minimum distance results for turbo codes designed with drp interleavers. In Procedings of 3rd international symposium on turbo codes and related topics, Brest (pp. 169–172). France.

  12. 12

    Nimbalker B. C. T. K. B. A., & Blankenship Y. (2008). ARP and QRP interleavers for LTE turbo coding. In IEEE WCNC. Las Vegas, USA, April 2008.

  13. 13

    Berrou C., Glavieux A. (1996) Near optimum error correcting coding and decoding: Turbo codes. IEEE Transactions on Communications 44(10): 1261–1271

  14. 14

    Dolinar, S., & Divsalar, D. (1995). Weight distributions for turbo codes using random and non-random permutations. TDA Progress Report 42-122 (pp. 56–65). Jet Propulsion Lab. August 1995.

  15. 15

    Dunscombe E., Piper F. C. (1989) Optimal interleaving scheme for convolutional coding. Electronics Letters 25(22): 1517–1518

  16. 16

    Divsalar, D., & Pollara, F. (1995). Turbo codes for PCS applications. In Proceedings of ICC’95 (pp. 54–59). Seattle, WA, June 1995.

  17. 17

    Vucetic, B., & Yuan, J. (2004). Turbo codes principles and applications. Kluwer Academic Publishers, Fourth Printing.

  18. 18

    Benedetto S., Montorsi G. (1996) Design of parallel concatenated convolutional codes. IEEE Transactions on Commununications 44(5): 591–600

Download references

Author information

Correspondence to Orhan Gazi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gazi, O. Prunable Collision Free Random Interleaver Design. Wireless Pers Commun 65, 555–566 (2012). https://doi.org/10.1007/s11277-011-0272-0

Download citation

Keywords

  • Turbo codes
  • Memory collision
  • Parallel processing
  • Prunable interleaver