Wireless Personal Communications

, Volume 53, Issue 3, pp 349–364 | Cite as

Cooperative Communications in Future Home Networks

  • Zülküf Genç
  • Umar H. Rizvi
  • Ertan Onur
  • Ignas Niemegeers
Open Access
Article

Abstract

The basic idea behind cooperative communications is that mobile terminals collaborate to send data to each other. This effectively adds diversity in the system and improves the overall performance. In this paper, we investigate the potential gains of cooperative communication in future home networks. We derive analytical expressions for the error probability of binary phase shift keying (BPSK) signals over Nakagami-m fading channels in a multi relay communication network. Following to the analytical study, we analyze the contribution of cooperative relaying to the 60GHz network connectivity through simulations using a realistic indoor environment model. We compare the performance of different relay configurations under variable obstacle densities. We show that a typical 60GHz indoor network should employ either a multi-relay configuration or a single-relay configuration with a smart relay selection mechanism to achieve acceptable outage rates. In the use of multiple-relay configuration, both analytical and simulation studies indicate that increasing the number of cooperative relays does not improve the system performance significantly after a certain threshold.

Keywords

60GHz Connectivity Cooperative Future home networks Indoor Millimeter-wave Multiple relay Relay Single relay 

Notes

Acknowledgments

This research was carried out in the “Future home network” and SiGi Spot projects in IOP GenCom program funded by the Dutch Ministry of Economic Affairs.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Akeyama, A. (2004 March). Study on mmwave propagation characteristics to realize wpans IEEE Standardization Document IEEE802.15-04/0094r0.Google Scholar
  2. 2.
    Collonge S., Zaharia G., Zein G. E. (2004) Influence of the human activity on wide-band characteristics of the 60GHz indoor radio channel. IEEE Transactions on Wireless Communications 3(6): 2396–2406CrossRefGoogle Scholar
  3. 3.
    WirelessHD specification version 1.0a, August 2009.Google Scholar
  4. 4.
    ECMA-387 (2008 December). High rate 60GHz PHY, MAC and HDMI PAL Standard. ECMA International.Google Scholar
  5. 5.
    Laneman J. N., Wornell G. W. (2003) Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory 49(10): 2415–2525CrossRefMathSciNetGoogle Scholar
  6. 6.
    Laneman J. N., Wornell G. W. (2004) Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory 50(12): 3062–3080CrossRefMathSciNetGoogle Scholar
  7. 7.
    Sendonaris A., Erkip E., Aazhang B. (2003) User cooperation diversity part I. System description. IEEE Transactions on Communications 51(11): 1927–1938CrossRefGoogle Scholar
  8. 8.
    Sendonaris A., Erkip E., Aazhang B. (2003) User cooperation diversity part II. Implementation aspects and performance analysis. IEEE Transactions on Communications 51(11): 1939–1948CrossRefGoogle Scholar
  9. 9.
    Su W., Sadek A. K., Liu K. J. R. (2007) Cooperative communication protocols in wireless networks: Performance analysis and optimum power allocation. Wireless Personal Communications 44: 181–217CrossRefGoogle Scholar
  10. 10.
    Genc, Z., Olcer, M.G., Onur, E., & Niemegeers, I. (2010). Improving 60GHz indoor connectivity with relaying. In Proceedings of ICC. May, 23–27.Google Scholar
  11. 11.
    Leong, C. S. C., Lee, B. S., Nix, A. R., & Strauch, P. (2004) A robust 60GHz wireless network with parallel relaying. In Proceedings of ICC (vol. 6, pp. 3528–3532). June, 20–24.Google Scholar
  12. 12.
    Singh, S., Ziliotto, F., Madhow, U., Belding, E. M., & Rodwell, M. J. W. (2007). Millimeter wave WPAN: Cross-layer modeling and multi-hop architecture. In Proceedings of INFOCOM (pp. 2336–2340). May, 6–12.Google Scholar
  13. 13.
    Simon M. K., Alouini M.-S. (2004) Digital communication over Fading Channels. Wiley, NYCrossRefGoogle Scholar
  14. 14.
    Deissner, J., Hubner, J., Hunold, D., & Voigt, J. (2008) RPS Radiowave Propagation Simulator user manual version 5.4. Actix GmbH.Google Scholar
  15. 15.
    Smulders, P., Li, C., Yang, H., Martijn, E., & Herben, M. (2004). 60GHz indoor radio propagation comparison of simulation and measurement results. In Proceedings of the 11th IEEE Symposium on Communications and Vehicular Technology.Google Scholar
  16. 16.
    Xu H., Kukshya V., Rappaport T.S. (2002) Spatial and temporal characteristics of 60-GHz indoor channels. IEEE Journal on Selected Areas in Communications 20(3): 620–630CrossRefGoogle Scholar
  17. 17.
    Williamson, M. R., Athanasiadou, G. E., & Nix, A. R. (1997). Investigating the effects of antenna directivity on wireless indoor communication at 60GHz. In Proceedings of PIMRC (vol. 2, pp. 635–639). September, 1–4.Google Scholar
  18. 18.
    Manabe T., Miura Y., Ihara T. (1996) Effects of antenna directivity and polarization on indoor multipath propagation characteristics at 60GHz. IEEE Journal on Selected Areas in Communications 14(3): 441–448CrossRefGoogle Scholar
  19. 19.
    Langen, B., Lober, G., & Herzig, W. (1994). Reflection and transmission behaviour of building materials at 60GHz. In Proceedings of PIMRC (pp. 505–509). September, 18–23.Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Zülküf Genç
    • 1
  • Umar H. Rizvi
    • 1
  • Ertan Onur
    • 1
  • Ignas Niemegeers
    • 1
  1. 1.Wireless and Mobile Communications GroupDelft University of TechnologyDelftThe Netherlands

Personalised recommendations