Wireless Personal Communications

, Volume 60, Issue 2, pp 237–249 | Cite as

On the Capacity of Mid-latitude High Frequency Ionospheric Channel

  • Abderrazak Abdaoui
  • Ali Dziri
  • Claude Goutelard
  • Han Vu-thien
  • Ammar Bouallègue


In this paper we consider the theoretical characterization of the ionospheric transmission. More accurately, we derive a closed form expression of the average capacity for Mid-latitude High Frequency (HF) ionospheric channels. Heretofore, this problem has been studied for Rayleigh channels when each tap of the impulse response has a Rayleigh distribution without characterizing the variance of this distribution. In this paper, we extend these works to HF ionospheric channels by evaluating the variance of the amplitude attenuation versus the Doppler spread and then the channel capacity. For a multipath HF ionospheric channel, we model the Doppler phenomenon as a Gaussian profile which is suggested for HF environments. Finally, we derive a closed form expression of the average channel capacity using the probability density function (pdf) of the instantaneous impulse response. Numerical results on both simulated and real measured data are derived at the end of the paper.


Ionospheric communications Capacity estimation Doppler spread Rayleigh fading 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bello P. (1963) Characterization of randomly time-variant linear channels. IEEE Transactions on Communications Systems CS-11: 360–393CrossRefGoogle Scholar
  2. 2.
    Biglieri E., Proakis J., Shamai S. (1988) Fading channels: Information-theoretic and communications aspects. IEEE Transactions on Information Theory 44(6): 2619–2692MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brockwell P., Davis R. (1991) Time series: Theory and methods. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Coulon F. (1989) Théorie et traitement des signaux, presses polytechniques romandes edn. Dunod, Saint-EtienneGoogle Scholar
  5. 5.
    de~Carvalho, C. J. T., & Filho, H. T. (2002). Radio wave propagation for mobile communication in high frequency. In Proceedings of IEEE International Symposium Antennas and Propagation Society (Vol. 1, pp. 702–704). San Antonio, Texas, USA.Google Scholar
  6. 6.
    Gherm V. E., Zernov N. N., Strangeways H. J. (1995) Monte carlo simulation in the theory of wave propagation in random media: II. Scintillation index, second and fourth moments. Waves Random Media 5(3): 277–287CrossRefGoogle Scholar
  7. 7.
    Gherm, V. E., Zernov, N. N., & Strangeways, H. J. (2005). Propagation model for transionospheric fluctuating paths of propagation: Simulator of the transionospheric channel. Radio Science 40(1), RS 1003.Google Scholar
  8. 8.
    Giles, T., & Willoughby, I. (1993). Simulation of high frequency voice band radio channels. In Proceedings IEEE, Military Communications Conference, MILCOM ’93 (pp. 342–348). Boston, MA, USA.Google Scholar
  9. 9.
    Goutelard, C. (1998). Physical studies of the ionosphere and telecommunications and teledetection development: Synergy and progress. In IAMeeting of IQITSPO, Turkey.Google Scholar
  10. 10.
    Goutelard C., & Pautot C. (2000). Ionospheric phenomena created by the solar eclipse of 11 August 1999 from Canada to Indies. In Proceedings of IEE, Eighth International Conference on HF Radio Systems and Techniques. Guilford (pp. 397–402). UKGoogle Scholar
  11. 11.
    Gradshtein L., Ryzhik M. (1994) Table of integrals: Series and products (Hardcovers), 5th ed. Alain Jeffrey Editor, New YorkGoogle Scholar
  12. 12.
    Hoffmeyer, J., Vogler, L., Mastrangelo, J., Pratt, L., & Behm, C. (1991). A new HF channel model and its implementation in a real-time simulator (pp. 173–177). Edinburgh, UK.Google Scholar
  13. 13.
    Lemmon, J., & Behm, C. (1991). Wideband HF noise/interference modelling part I: first-order statistics (pp. 91–277). NTIA report.Google Scholar
  14. 14.
    Mastrangelo J.F., Lemmon J.J., Vogler L.E., Hoffmeyer J.A., Pratt L.E., Behm C.J. (1997) A new wideband high frequency channel simulation system. IEEE Transactions on Communications 45(1): 26–34CrossRefGoogle Scholar
  15. 15.
    Ralphs J., Sladen F. (1976) An HF channel simulator using a new Rayleigh fading method. The Radio and Electronic Engineer 46(12): 459–587CrossRefGoogle Scholar
  16. 16.
    ShepherdR. Lomax J. (1967) Frequency spread in ionospheric radio propagation. IEEE Transactions on Communications Technology Coms-15(2): 268–275CrossRefGoogle Scholar
  17. 17.
    Rummler W. (1981) More on the multipath fading channel model. IEEE Transactions on Communications 39: 346–352CrossRefGoogle Scholar
  18. 18.
    Vogler L., Hoffmeyer J. (1993) A model for wideband HF-propagation channels. Radio Science 28(6): 1131–1142CrossRefGoogle Scholar
  19. 19.
    Watterson C., Juroshek J., Bensema W. (1970) Experimental confirmation of an HF channel model. IEEE Transactions on Communications Technology Com-18: 792–803CrossRefGoogle Scholar
  20. 20.
    Xu Z. W., Wu J., Li Q. (2007) Solution for the fourth moment equation of waves in random continuum under strong fluctuations: General theory and plane wave solution. IEEE Transactions on Antennas and Propagation 55(6): 1613–1621MathSciNetCrossRefGoogle Scholar
  21. 21.
    Xu Z. W., Wu J., Wu Z. S. (2004) A survey of ionospheric effects on space-based radar. Waves Random Media 14(2): S189–S273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Abderrazak Abdaoui
    • 1
  • Ali Dziri
    • 1
  • Claude Goutelard
    • 1
  • Han Vu-thien
    • 1
  • Ammar Bouallègue
    • 2
  1. 1.Signals and systems laboratoryConservatoire National des Arts et MetiersParis cedex 3France
  2. 2.Signal and Communications LaboratoryEcole Nationale D’ingénieurs de TunisTunisTunisie

Personalised recommendations