Wireless Personal Communications

, Volume 64, Issue 2, pp 233–253 | Cite as

On the Performance of Energy-Division Multiple Access with Regular Constellations

  • Pierluigi Salvo RossiEmail author
  • Gianmarco Romano
  • Francesco Palmieri


In this paper we describe a multiple-access protocol in which different users are assumed to share the same bandwidth and the same pulse. Users employ the same modulation (binary-phase shift keying, quadrature-phase shift keying, and rectangular-phase shift keying are considered) with different transmitted magnitude, and are discriminated on the basis of the corresponding magnitude at receiver location. Conditions for user discrimination are analyzed. The proposed receiver uses successive decoding in order to avoid exponential complexity of maximum-likelihood decoding. Such a scheme, compared to orthogonal multiaccess schemes (e.g. time- or frequency-division multiple access) allows to achieve larger normalized throughput for systems operating in large signal-to-noise ratio range, and may be jointly applied with classical protocols in personal-area networks. Analytical and numerical results, in terms of bit error rate and normalized throughput, are derived for performance evaluation on additive white Gaussian noise channels.


Amplitude modulation Bit error rate Multiple access Normalized throughput Successive decoding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haykin S. (2000) Digital Communications. Wiley, West Sussex, U.K.Google Scholar
  2. 2.
    Proakis J. G. (2000) Digital Communications. McGraw Hill, New YorkGoogle Scholar
  3. 3.
    Rappaport T. F. (2002) Wireless Communications: Principles and Practice. Prentice Hall, PrenticeGoogle Scholar
  4. 4.
    Verdú S. (1998) Multiuser Detection. Cambridge University Press, CambridgezbMATHGoogle Scholar
  5. 5.
    Guess T., Varanasi M. K. (2003) Signal design for bandwidth-efficient multiple-access communications based on eigenvalue optimization. IEEE Transactions on Information Theory 46(6): 2045–2058MathSciNetCrossRefGoogle Scholar
  6. 6.
    Varanasi M. K., Guess T. (2001) Bandwidth-efficient multiple access (BEMA): A new strategy based on signal design under quality-of-service constraints for successive-decoding-type multiuser receivers. IEEE Transactions on Communications 49(5): 844–854zbMATHCrossRefGoogle Scholar
  7. 7.
    Viswanath P., Anantharam V., Tse D. N. C. (1999) Optimal sequences, power control, and user capacity of synchronous CDMA systems with linear MMSE multiuser receivers. IEEE Transactions on Information Theory 45(6): 1968–1983MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Guess T., Varanasi M. K. (2003) A Comparison of bandwidth-efficient multiple access to other signal designs for correlated waveform multiple-access communications. IEEE Transactions on Information Theory 49(6): 1558–1564MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Gilhousen K. S., Jacobs I. M., Padovani R., Viterbi A. J., Weaver L. A., Wheatley C. E. (1991) On the capacity of a cellular CDMA system. IEEE Transactions on Vehicular Technology 40(2): 303–311CrossRefGoogle Scholar
  10. 10.
    Zander J. (1992) Performance of optimum transmitter power control in cellular radiosystems. IEEE Transactions on Vehicular Technology 41(1): 57–62CrossRefGoogle Scholar
  11. 11.
    Aulin, T. M., & Espineira, R. (June 1999). Trellis coded multiple access (TCMA). IEEE International Conference on Communications (ICC), (pp. 1177–1181).Google Scholar
  12. 12.
    Brannstrom F. N., Aulin T. M., Rasmussen L. K. (2001) Constellation-constrained capacity for trellis code multiple access systems. IEEE Global Telecommunications Conference (GLOBECOM) 2: 791–795Google Scholar
  13. 13.
    Zhang W., D’Amours C., Yongacoglu A. (2004) Trellis coded modulation design for multi-user systems on AWGN channels. IEEE Vehicular Technology Conference (VTC) 3: 1722–1726Google Scholar
  14. 14.
    Salvo Rossi, P., Romano, G., Mattera, D., Palmieri, F., & Marano, S. (July 2006). An energy-division multiple access scheme. International conference on information fusion (ICIF) (pp. 1–5).Google Scholar
  15. 15.
    Salvo Rossi, P., Romano, G., Mattera, D., Palmieri, F., & Marano, S. (March 2007). A scheme for multiuser communications based on energy division. Conference on information sciences and systems (CISS), pp. 561–565.Google Scholar
  16. 16.
    Steele R., Hanzo L. (1999) Mobile radio communications, 2nd ed. Wiley, West Sussex, U.K.CrossRefGoogle Scholar
  17. 17.
    Romano, G., Ciuonzo, D., Palmieri, F., & Salvo Rossi, P. (June 2007). Group gain design for overloaded CDMA. IEEE international workshop on signal processing advances in wireless communications (SPAWC), pp. 1–5.Google Scholar
  18. 18.
    Romano, G., Palmieri, F., Willett, P. K., & Mattera, D. (March 2005). Separability and gain control for overloaded CDMA. Conference on Information Sciences and Systems (CISS).Google Scholar
  19. 19.
    Verdú S. (1986) Optimum multiuser asymptotic efficiency. IEEE Transactions on Communications 34(9): 890–897zbMATHCrossRefGoogle Scholar
  20. 20.
    Varanasi M. K. (1999) Decision feedback multiuser detection: A systematic approach. IEEE Transactions on Information Theory 45(1): 219–240MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Cho K., Yoon D. (2002) On the general BER expression of one- and two-dimensional amplitude modulations. IEEE Transactions on Communications 50(7): 1074–1080CrossRefGoogle Scholar
  22. 22.
    Stamoulis A., Al-Dhahir N. (2003) Impact of space-time block codes on 802.11 network throughput. IEEE Transactions on Wireless Communications 2(5): 1029–1039CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Pierluigi Salvo Rossi
    • 1
    Email author
  • Gianmarco Romano
    • 1
  • Francesco Palmieri
    • 1
  1. 1.Department of Information EngineeringSecond University of NaplesAversaItaly

Personalised recommendations