Advertisement

Wireless Personal Communications

, Volume 63, Issue 2, pp 501–513 | Cite as

Design of Linear Phased Array for Interference Suppression Using Array Polynomial Method and Particle Swarm Optimization

  • D. I. Abu-Al-Nadi
  • T. H. Ismail
  • H. Al-Tous
  • M. J. Mismar
Article

Abstract

In this work, a linear phased array pattern design with null steering is achieved using the array polynomial technique and the Particle Swarm Optimization (PSO) algorithm. The null steering for interference suppression is obtained by controlling some of the roots on the Schelkunoff’s unit circle while keeping the roots responsible for the main beam unchanged. The rest of the roots are controlled to minimize the Side Lobe Level (SLL) of the array pattern using the PSO algorithm. It has been demonstrated that this technique achieved more than 50% reduction in the parameters needed to be optimized compared with the conventional complex coefficients optimization techniques. Consequently, the fitness function is only responsible for the SLL as the prescribed controlled nulls and the mainbeam characteristics are solved analytically. The simulated results show the effectiveness of the proposed technique.

Keywords

Linear phased arrays Null steering Array polynomial Pattern synthesis PSO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steyskal H., Shore R. A., Haupt R. L. (1986) Methods for null control and their effects on radiation pattern. IEEE Transactions on Antennas and Propagation 34: 404–409CrossRefGoogle Scholar
  2. 2.
    Khodier M. M., Christodoulou C. G. (2005) Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Transactions on Antennas and Propagation 53(8): 2674–2679CrossRefGoogle Scholar
  3. 3.
    Bevelacqua P. J., Balanis C. A. (2007) Minimum sidelobe levels for linear arrays. IEEE Transactions on Antennas and Propagation AP-55: 3442–3449CrossRefGoogle Scholar
  4. 4.
    Quevedo-Teruel O., Rajo-Iglesias E. (2006) Ant colony optimization in thinned array synthesis with minimum sidelobe level. IEEE Transactions on Antennas and Propagation 5(1): 349–352Google Scholar
  5. 5.
    Bray M., Werner D., Boeringer D., Machuga D. (2002) Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning. IEEE Transactions on Antennas and Propagation AP-50(12): 1732–1742CrossRefGoogle Scholar
  6. 6.
    Mahanti G. K., Pathak N., Mahanti P. (2007) Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm. Progress in Electromagnetics Research, PIER 75: 319–328CrossRefGoogle Scholar
  7. 7.
    Haupt R. L. (1997) Phase-only adaptive nulling with a genetic algorithm. IEEE Transactions on Antennas and Propagation 45(6): 1009–1015CrossRefGoogle Scholar
  8. 8.
    Awan, H., Abdullah, K., & Faryad, M. (2008). Implementing smart antenna system using genetic algorithm and artificial immune system. 17th international confernece on microwaves, radar and wireless communications, (pp. 1–4) May 19–21, 2008.Google Scholar
  9. 9.
    Murino V., Trucco A., Regazzoni C. (1996) Synthesis of unequally spaced arrays by simulated annealing. IEEE Transactions on Signal Processing 44(1): 119–123CrossRefGoogle Scholar
  10. 10.
    Coleman C. M., Rothwell E. J., Ross J. E. (2004) Investigation of simulated annealing, ant-colony optimization, and genetic algorithms for self-structuring antennas. IEEE Transactions on Antennas and Propagation 52(4): 1007–1014CrossRefGoogle Scholar
  11. 11.
    Kurup D. G., Himdi M., Rydberg A. (2003) Synthesis of uniform amplitude unequally spaced antenna arrays using differential evolution algorithm. IEEE Transactions on Antennas and Propagation 51(9): 2210–2217CrossRefGoogle Scholar
  12. 12.
    Rattan M., Patterh M. S., Sohi B. S. (2008) Antenna array optimization using evolutionary approaches. Apeiron 15(1): 78Google Scholar
  13. 13.
    Jianfeng, Y., Weizheng, P., & Jim, Z. (2008). Immune algorithm in array-pattern synthesis with side lobe reduction. International conference on microwave and millimeter wave technology, ICMMT 2008, (pp. 1127–1130) April 21–24, 2008.Google Scholar
  14. 14.
    Robinson J., Rahmat-Samii Y. (2004) Particle swarm optimization in electromagnetics. IEEE Transactions on Antennas and Propagation 52(2): 397–407MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jin N., Rahmat-Samii Y. (2007) Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multi-objective implementations. IEEE Transactions on Antennas and Propagation 55(3): 556–567CrossRefGoogle Scholar
  16. 16.
    Boeringer D. W., Werner D. H. (2004) Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Transactions on Antennas and Propagation 52(3): 771–779CrossRefGoogle Scholar
  17. 17.
    Donelli, M., Azaro, R., De Natale, F., & Massa, A. (2006). An innovative computational approach based on a particle swarm strategy for adaptive phased-arrays control. IEEE Transactions on Antennas and Propagation. AP-54(3).Google Scholar
  18. 18.
    Mahmoud K., El-Adawy M., Ibrahem S., Bansal R., Zainud-Deen S. (2008) MPSO-MOM: A hybrid modified particle swarm optimization and method of moment algorithm for smart antenna synthesis. Electromagnetics 28: 411–426CrossRefGoogle Scholar
  19. 19.
    Monorchio A., Genovesi S., Bertini S., Brizzi A. (2007) An efficient interpolation scheme for the synthesis of linear arrays based on Schelkunoff polynomial method. IEEE Antennas and Wireless Letters 6: 484–487CrossRefGoogle Scholar
  20. 20.
    Mismar M. J., Ismail T. H., Abu-Al-Nadi D. I. (2007) Analytical array polynomial method for linear antenna arrays with phase-only control. AEÜ -International Journal of Electornics and communications 61(7): 485–492CrossRefGoogle Scholar
  21. 21.
    Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the IEEE conference on neural networks IV, Piscataway, NJ.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • D. I. Abu-Al-Nadi
    • 1
  • T. H. Ismail
    • 2
  • H. Al-Tous
    • 2
  • M. J. Mismar
    • 3
  1. 1.Department of Electrical EngineeringUniversity of JordanAmmanJordan
  2. 2.Department of Electronics and CommunicationsAl-Ahliyya Amman UniversityAmmanJordan
  3. 3.Department of Electronics EngineeringPrincess Sumaya University for TechnologyAmmanJordan

Personalised recommendations