Wireless Personal Communications

, Volume 63, Issue 1, pp 65–82

Extended MULE Concept for Traffic Congestion Monitoring

  • Syed Faraz Hasan
  • Nazmul H. Siddique
  • Shyam Chakraborty
Article

Abstract

Wireless Sensor Networks are being recently studied to monitor real-time traffic conditions on roads and highways. Idea of using vehicles to convey information from sensors placed alongside roads to the dedicated base stations has also been under scrutiny for some time. In this paper, we argue that a sensor placed on a vehicle instead of a fixed location can effectively sense traffic congestion on the road and report it to the already available WLAN Access Points (APs) instead of the dedicated base stations. This way, instead of deploying series of base stations to collect traffic information, congestion information can be sent over the ISM links between the vehicular sensor nodes and the WLAN APs. This paper investigates, as we call it, the Extended MULE concept by using actual experimental data obtained from the test drives across the city. Our results show that adopting this idea is effective in reporting traffic congestion on the roads.

Keywords

802.11 WLANs Measurement Vehicular communications Wireless sensor networks Wireless ISPr 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lewis F. (2004) Wireless sensor networks, book chapter, smart environments: Technology, protocols and applications. Wiley, LondonGoogle Scholar
  2. 2.
    Romer K., Mattern F. (2004) The design space of wireless sensor networks. IEEE Wireless Communications 11(6): 54–61CrossRefGoogle Scholar
  3. 3.
    Sohraby K., Minoli D., Znati T. (2007) Wireless sensor networks: Technology, protocols and applications. Wiley-Interscience, LondonCrossRefGoogle Scholar
  4. 4.
    Shah, R., Roy, S., Jain, S., & Brunette, W. (2003). Data mules: Modelling a three-tier architecture for sparse sensor networks. In Proceedings of 1st IEEE international workshop on sensor network protocols and applications (pp. 30–41). Alaska, USA: IEEE.Google Scholar
  5. 5.
    Sensor Line, Road Traffic Technology. Available online at http://www.roadtraffictechnology.com/contractors/detection/sensor-line.
  6. 6.
    Coleri, S., Cheung, S. Y., & Varaiya, P. (2004). Sensor networks for monitoring traffic (available online).Google Scholar
  7. 7.
    Cho Y. (2007) Estimating velocity fields on a freeway from low-resolution videos. IEEE Transactions on Intelligent Transportation Systems 7(4): 463–469CrossRefGoogle Scholar
  8. 8.
    Li X., Shu W., Li M. (2009) Performance evaluation of vehicle-based mobile sensor networks for traffic monitoring. IEEE Transactions on Vehicular Technology 58(4): 1647–1653CrossRefGoogle Scholar
  9. 9.
    Hull, B., Bychkovsky, V., Chen, K., Goraczko, M., Miu, A., Shih, E., et al. (2006). CarTel: A distributed mobile sensor computing system. In ACM SenSys (pp. 125–138). Colorado, USA: ACM.Google Scholar
  10. 10.
    LeBrun J., Chuah C., Ghosal D., Zhang M. (2005) Knowledge-based opportunistic forwarding in vehicularWireless Ad Hoc networks. IEEE Vehicular Technology Conference 4: 2289–2293Google Scholar
  11. 11.
    Zegura, E., Ammar, M., & Zhao, W. (2004). A message ferrying approach for data delivery in sparse mobile Ad Hoc networks. In IEEE MobiHoc (pp. 187–198).Google Scholar
  12. 12.
    Schmidt T., Townsend A. (2003) Why Wi-Fi wants to be free. ACM Communications 46(5): 47–52CrossRefGoogle Scholar
  13. 13.
    Ott, J., & Kutscher, D. (2005). Exploiting regular hot-spots for drive-thru internet. In Proceedings of KiVS. Kaiser Slantern, Germany: Springer.Google Scholar
  14. 14.
    Balasubramanian A., Mahajan R., Venkataramani A., Levine B., Zahorjan J. (2008) Interactive WiFi connectivity for moving vehicles. SIGCOMM Computer Communication Review 38(4): 427–438CrossRefGoogle Scholar
  15. 15.
    Vasilescu, I., Kotay, K., Rus, D., Dunbabin, M., & Corke, P. (2005). Data collection, storage, and retrieval with an underwater sensor network. In ACM SenSys (pp. 154–165).Google Scholar
  16. 16.
    Basios, C. (2005). Defining architecture and key issues towards WLAN roaming. In Proceedings of ConTEL (Vol. 1, pp. 225–230). Zaghreb, Croatia. IEEE.Google Scholar
  17. 17.
    Best Current Practices for WISP Roaming, WiFi Alliance, Feb (2003).Google Scholar
  18. 18.
    Geier, J. (2002). The BIG question: 802.11a or 802.11b? Wi-Fi Planet online articles, http://www.wi-fiplanet.com/columns/article.php/961181.
  19. 19.
    Vistumbler website, http://www.vistumbler.net. (As on August 18, 2009).
  20. 20.
    Proxim Wireless Networks, Maximizing your 802.11g Investment, White Paper, (2003).Google Scholar
  21. 21.
    Selvam, T., & Srikanth, S. (2009). Performance study of IEEE 802.11n WLANS. In IEEE COMSNETS (pp. 1–6).Google Scholar
  22. 22.
    Mishra A., Shin M., Arbaugh W. (2003) An empirical analysis of the IEEE 802.11 MAC layer handoff process. ACM SIGCOMM Computer Communication Review 33(2): 93–102CrossRefGoogle Scholar
  23. 23.
    Cottingham, D., Wassell, I., & Harle, R. (2007). Performance of IEEE 802.11a in vehicular contexts. In 65th IEEE vehicular technology conference (pp. 854–858).Google Scholar
  24. 24.
    Gass, R., Scott, J., & Diot, C. (2006). Measurements of in-motion 802.11 networking. In Proceedings of WMCSA (pp. 69–74).Google Scholar
  25. 25.
    Eriksson, J., Balakrishnan, H., & Madden, S. (2008). Cabernet: Vehicular content delivery using WiFi. In 14th ACM Mobicom (pp. 199–210).Google Scholar
  26. 26.
    Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2009). Impact of RSS on the performance of 3 GPP applications in a Net-on-Roads connection. In 17th telecommunications forum (pp. 266–269).Google Scholar
  27. 27.
    Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2009). Disruption Model for Net-on-Roads. In 2nd international conference on applications of digital information and web technologies (pp. 282–287).Google Scholar
  28. 28.
    Hasan, S. F., Siddique, N. H., Chakraborty, S. (2010). On the Effectiveness of WISPr in roadside-to-vehicle communications. IEEE Communications Letters, 14(8) (to appear).Google Scholar
  29. 29.
    Ott J., Kutscher D. (2005) A disconnection-tolerant transport for drivethru internet environments. Proceedings of IEEE INFOCOM 3: 1849–1862Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Syed Faraz Hasan
    • 1
  • Nazmul H. Siddique
    • 1
  • Shyam Chakraborty
    • 1
  1. 1.Intelligent Systems Research Centre, School of Computing and Intelligent SystemsUniversity of UlsterLondonderryUK

Personalised recommendations