Advertisement

Wireless Personal Communications

, Volume 62, Issue 4, pp 807–830 | Cite as

A Generalized Suzuki Distribution

  • Christopher S. Withers
  • Saralees Nadarajah
Article

Abstract

Suzuki distribution is a popular model in wireless communications. In this paper, a generalization of it is proposed and two moment estimates derived. The performance of the estimates is assessed by simulation. Finally, applications are discussed for two problems in wireless communications.

Keywords

Moment estimation Radio propagation Suzuki distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alouini M. S., Goldsmith A. J. (2000) Adaptive modulation over Nakagami fading channels. Wireless Personal Communications 13: 119–143CrossRefGoogle Scholar
  2. 2.
    Babalis P. G., Trakadas P. T., Capsalis C. N. (2002) A maximum likelihood decoding algorithm for wireless channels. Wireless Personal Communications 23: 283–295CrossRefGoogle Scholar
  3. 3.
    Coulson A. J., Williamson A. G., Vaughan R. G. (1998) An improved fading distribution for mobile radio. IEE Proceedings of Communications 145: 197–202CrossRefGoogle Scholar
  4. 4.
    Hashemi H. (1993) The indoor radio propagation channel. Proceedings of the IEEE 81: 943–968CrossRefGoogle Scholar
  5. 5.
    Johnson N. L., Kotz S. (1970) Continuous univariate distributions, Vol. 1. Houghton Miflin Company, BostonzbMATHGoogle Scholar
  6. 6.
    Karadimas P., Kotsopoulos S. A. (2008) A generalized modified Suzuki model with sectored and inhomogeneous diffuse scattering component. Wireless Personal Communications 47: 449–469CrossRefGoogle Scholar
  7. 7.
    Khalighi M. A., Raoof K., Jourdain G. (2002) Capacity of wireless communication systems employing antenna arrays, a tutorial study. Wireless Personal Communications 23: 321–352CrossRefGoogle Scholar
  8. 8.
    Nadarajah S., Kotz S. (2007) A class of generalized models for shadowed fading channels. Wireless Personal Communications 43: 1113–1120CrossRefGoogle Scholar
  9. 9.
    Nielsen J. O., Afanassiev V., Andersen J. B. (2001) A dynamic model of the indoor channel. Wireless Personal Communications 19: 91–120CrossRefGoogle Scholar
  10. 10.
    Oh S. W., Li K. H. (2001) Performance evaluation for forward-link cellular DS-CDMA over frequency-selective Nakagami multipath fading channels. Wireless Personal Communications 18: 275–287CrossRefGoogle Scholar
  11. 11.
    Polydorou D. S., Capsalis C. N. (1997) A new theoretical model for the prediction of rapid fading variations in an indoor environment. IEEE Transactions on Vehicular Technology 46: 748–754CrossRefGoogle Scholar
  12. 12.
    Rafiq G., Patzold M. (2009) A study of the influence of shadowing on the statistical properties of the capacity of mobile radio channels. Wireless Personal Communications 50: 5–18CrossRefGoogle Scholar
  13. 13.
    Shankar P. M. (2004) Error rates in generalized shadowed fading channels. Wireless Personal Communications 28: 233–238CrossRefGoogle Scholar
  14. 14.
    Shankar P. M. (2006) Performance analysis of diversity combining algorithms in shadowed fading channels. Wireless Personal Communications 37: 61–72CrossRefGoogle Scholar
  15. 15.
    Siqueira G. L., Vasquez E. J. A. (2000) Local and global signal variability statistics in a mobile urban environment. Wireless Personal Communications 15: 61–78CrossRefGoogle Scholar
  16. 16.
    Stacy E. W., Mihram G. A. (1965) Parameter estimation for a generalized gamma distrition. Technometrics 7: 349–358MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Suzuki H. (1977) A statistical model for urban radio propagation. IEEE Transactions on Communications COM-25: 673–680CrossRefGoogle Scholar
  18. 18.
    Vellis F. E., Capsalis C. N. (2000) A model for the statistical characterization of fast fading in the presence of a user. Wireless Personal Communications 15: 207–219CrossRefGoogle Scholar
  19. 19.
    Yang Y. P., Jong S. L., Liu J. C., Liu C. H. (2003) Performance of up-link MC-CDMA system with frequency offset and imperfect channel estimation simultaneously over Nakagami fading channels. Wireless Personal Communications 27: 247–265CrossRefGoogle Scholar
  20. 20.
    Yilmaz F., Kucur O. (2009) Symbol error rate performance of QS-CDMA over frequency selective time non-selective multipath generalized gamma fading channels. Wireless Personal Communications 49: 487–516CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Applied Mathematics GroupIndustrial Research LimitedLower HuttNew Zealand
  2. 2.School of MathematicsUniversity of ManchesterManchesterUK

Personalised recommendations