Advertisement

Wireless Personal Communications

, Volume 57, Issue 3, pp 441–464 | Cite as

5G Based on Cognitive Radio

  • Cornelia-Ionela Badoi
  • Neeli Prasad
  • Victor Croitoru
  • Ramjee Prasad
Article

Abstract

Both the cognitive radio (CR) and the fifth generation of cellular wireless standards (5G) are considered to be the future technologies: on one hand, CR offers the possibility to significantly increase the spectrum efficiency, by smart secondary users (CR users) using the free licensed users spectrum holes; on the other hand, the 5G implies the whole wireless world interconnection (WISDOM—Wireless Innovative System for Dynamic Operating Megacommunications concept), together with very high data rates Quality of Service (QoS) service applications. In this paper, they are combined together into a “CR based 5G”. With this aim, two novel ideas are advanced: the 5G terminal is a CR terminal and the CR technology is chosen for WISDOM concept. Thus, the 5G takes CR flexibility and adaptability and makes the first step through a commercial and tangible form.

Keywords

The fifth generation of cellular wireless standards (5G) Cognitive radio (CR) Wireless Innovative System for Dynamic Operating Megacommunications (WISDOM) Wireless systems integration and adaptation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prasad, R., & Lauridsen, O. M. (2007). Convergence of navigation and communication. In An AFCEA International Symposium on Aerospace Technologies and Applications for Dual Use, Rome.Google Scholar
  2. 2.
  3. 3.
    Tellabs Operations, 4G: the What, Why and When. http://www.tellabs.com/resources/papers/tlab_4g-whatwhywhen.pdf.
  4. 4.
    Agilent Technologies, IMT-Advanced: 4G Wireless Takes Shape in an Olympic Year. http://cp.literature.agilent.com/litweb/pdf/5989-9793EN.pdf.
  5. 5.
    Prasad, R., & Ohmori, S. (2009). Ubiquitous easy life. In Second Japan EU Symposium on the “Future Internet”, Tokyo.Google Scholar
  6. 6.
    Janevski, T. (2009). 5G Mobile phone concept. In 6th IEEE Consumer Communications and Networking Conference—CCNC 2009 (pp. 1–2).Google Scholar
  7. 7.
    Chen K. C., Prasad R. (2009) Cognitive radio networks. Wiley, New YorkCrossRefGoogle Scholar
  8. 8.
    Chen, K. C., Kartal Cetin, B., Peng, Y. C., Prasad, N., Wang, J., & Lee, S. (2009). Routing for cognitive radio networks consisting of opportunistic links. Wiley InterScience, Wireless Communications and Computing.Google Scholar
  9. 9.
    Khalife H., Malouch N., Fdida S. (2009) Multihop cognitive radio networks: to route or not to route. IEEE Network 23: 20–25CrossRefGoogle Scholar
  10. 10.
    Chen, K. C., Peng, Y. J., Prasad, N., Liang, Y. C., & Sun, S. (2008). Cognitive radio network architecture: Part I—general structure. In ACM ICUIMC, Seoul.Google Scholar
  11. 11.
    Chen, K. C., Peng, Y. J., Prasad, N., Liang, Y. C., & Sun, S. (2008). Cognitive radio network architecture: Part II—trusted network layer structure. In ACM ICUIMC, Seoul.Google Scholar
  12. 12.
    Miljanic, Z., Seskar, I., Le, K., & Raychaudhuri, D. (2007). The WINLAB network centric cognitive radio hardware platform—WiNC2R. In CrownCom (pp. 155–160).Google Scholar
  13. 13.
    Kuroda, M., Ishizu, K., Harada, H., & Komiya, R. (2007). A study of radio-information services for networks of cognitive radios. In SECON (pp. 662–669).Google Scholar
  14. 14.
    Jiang, H., Liu, Y., Zhang, X.-q., & Huang, Y.-q. (2009). Design of cognitive radio node engine based on genetic algorithm. In ICIE (pp. 22–25).Google Scholar
  15. 15.
    Park, S. K., Shin, Y., & Lee, W. C.: (2007). Goal-Pareto based NSGA for optimal reconfiguration of cognitive radio systems. In CrownCom (pp. 147–153).Google Scholar
  16. 16.
    Doerr, C., Grunwald, D., & Sicker, D. C.: (2008). Enhancing cognitive radio algorithms through efficient, automatic adaptation management. In VTC (pp. 1–5).Google Scholar
  17. 17.
    Klumperink E. A. M., Shrestha R., Mensink E., Arkesteijn V. J., Nauta B. (2007) Cognitive radios for dynamic spectrum access—polyphase multipath radio circuits for dynamic spectrum access. IEEE Communications Magazine 45: 104–112CrossRefGoogle Scholar
  18. 18.
    Turunen, V., Kosunen, M., Huttunen, A., Kallioinen, S., Ikonen, P., Parssinen, A., & Ryynanen, J. (2009). Implementation of cyclostationary feature detector for cognitive radios. In CROWNCOM (pp. 1–4).Google Scholar
  19. 19.
    Nishi, K., Yoshizawa, S., & Miyanaga, Y. (2007). A study of dynamic reconfigurable FFT processor for OFDM based cognitive radio. In ISCIT (1507–1510).Google Scholar
  20. 20.
    Haykin S. (2005) Cognitive radio: Brain-empowered wireless communications. IEEE Selected Areas in Communications 23: 201–220CrossRefGoogle Scholar
  21. 21.
    Chen, K. C., Kung, L. H., Shiung, D., Prasad, R., & Chen, S. (2007). Self-organizing terminal architecture for cognitive radio networks. In The 10th International Symposium on Wireless Personal Multimedia Communications.Google Scholar
  22. 22.
    Krishnamurthy S., Thoppian M., Venkatesan S., Prakash R. (2005) Control channel based MAC-layer configuration, routing and situation awareness for cognitive radio networks. MILCOM 1: 455–460Google Scholar
  23. 23.
    Doerr, C., Neufeld, M., Fifield, J., Weingart, T., Sicker, D. C., & Grunwald, D. (2005). MultiMAC—An adaptive MAC framework for dynamic radio networking. In DySPAN (pp. 548–555).Google Scholar
  24. 24.
    Taniguchi, N., Aust, S., Takizawa, Y., Yamaguchi, A., & Obana, S. (2007). Packet allocation for efficient use of multiple wireless links in cognitive radio networks. In GIIS (pp. 27–34).Google Scholar
  25. 25.
    Marojevic, V., Salazar, J., Reves, X., & Gelonch, A. (2007). On integrating radio, computing, and application resource management in cognitive radio systems. In WiMOB (pp. 32–32).Google Scholar
  26. 26.
    Kannan, R., Wu, Z., Wei, S., Chakravarthy, V., & Rangaswamy, M. (2007). Soft-decision cognitive radio power control based on intelligent spectrum sensing. In International Waveform Diversity and Design Conference (pp. 193–194).Google Scholar
  27. 27.
    Xia, W., & Qi, Z. (2007). Power control for cognitive radio base on game theory. In WiCom 2007 (pp. 1256–1259).Google Scholar
  28. 28.
    Peng, T., Wang, W., Lu, Q., & Wang, W. (2007). Subcarrier allocation based on water-filling level in OFDMA-based cognitive radio networks. In WiCom (pp. 196–199).Google Scholar
  29. 29.
    Le, H.-S. T., & Liang, Q. (2007). An efficient power control scheme for cognitive radios. In WCNC (pp. 2559–2563).Google Scholar
  30. 30.
    Qian, L., Li, X., Attia, J., & Gajic, Z. (2007). Power control for cognitive radio ad hoc networks. In LANMAN (pp. 7–12).Google Scholar
  31. 31.
    Pursley M. B., Royster T. C. (2008) Low-complexity adaptive transmission for cognitive radios in dynamic spectrum access networks. IEEE Journal on Selected Areas in Communications 26: 83–94CrossRefGoogle Scholar
  32. 32.
    Lansford, J. (2004). UWB coexistence and cognitive radio. In IEEE International Workshop on Ultra Wideband System (pp. 35–39).Google Scholar
  33. 33.
    Sydor J. (2004) True broadband for the countryside [5 GHz cognitive radio]. Communications Engineer 2: 32–36CrossRefGoogle Scholar
  34. 34.
    Hoven N., Sahai A. (2005) Power scaling for cognitive radio. Wireless Networks, Communications and Mobile Computing Conference 1: 250–255CrossRefGoogle Scholar
  35. 35.
    Jing, X., Mau, S.-C., Raychaudhuri, D., & Matyas, R. (2005). Reactive cognitive radio algorithms for co-existence between IEEE 802.11b and 802.16a networks. In GLOBECOM.Google Scholar
  36. 36.
    Ishii, H., & Wornell, G. W. (2005). OFDM blind parameter identification in cognitive radios. In PIMRC (pp. 700–705).Google Scholar
  37. 37.
    Tang, H. (2005). Some physical layer issues of wide-band cognitive radio systems. In DySPAN (pp. 151–159).Google Scholar
  38. 38.
    Huang, S., Ding, Z., & Liu, X. (2007). Non-intrusive cognitive radio networks based on smart antenna technology. In GLOBECOM (pp. 4862–4867).Google Scholar
  39. 39.
    Azarnasab, E., Kempter, R., Patwari, N., & Farhang-Boroujeny, B. (2007). Filterbank multicarrier and multicarrier CDMA for cognitive radio systems. In CrownCom (pp. 472–481).Google Scholar
  40. 40.
    Chu, F.-S., & Chen, K.-C. (2007). Radio resource allocation in OFDMA cognitive radio systems. In PIMRC (pp. 1–5).Google Scholar
  41. 41.
    Niyato D., Hossain E. (2008) Market-equilibrium, competitive, and cooperative pricing for spectrum sharing in cognitive radio networks: Analysis and comparison. IEEE Transactions on Wireless Communications 7: 4273–4283CrossRefGoogle Scholar
  42. 42.
    Safdar, G. A., & O’Neill, M. (2009). Common control channel security framework for cognitive radio networks. In VTC (pp. 1–5).Google Scholar
  43. 43.
    Brown, T. X., & Sethi, A. (2007). Potential cognitive radio denial-of-service vulnerailities and protection countermeasures: A multi-dimensional analysis and assessment. In CrownCom (pp. 456–464).Google Scholar
  44. 44.
    Sampath, A., Dai, H., Zheng, H., & Zhao, B. Y. (2007). Multi-channel jamming attacks using cognitive radios. In ICCCN (pp. 352–357).Google Scholar
  45. 45.
    Xu, W., Kamat, P., & Trappe, W. (2006). TRIESTE: A trusted radio infrastructure for enforcing SpecTrum etiquettes. In SDR (pp. 101–109).Google Scholar
  46. 46.
    Nomura, R., Kuroda, M., & Mizuno, T. (2007). Evaluation of EAP based re-authentication protocol for high-speedvehicular handover in cognitive radio networks. In CrownCom.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Cornelia-Ionela Badoi
    • 1
  • Neeli Prasad
    • 2
  • Victor Croitoru
    • 1
  • Ramjee Prasad
    • 2
  1. 1.Faculty of Electronics, Telecommunications, and Information Technology“POLITEHNICA” University of BucharestBucharestRomania
  2. 2.Center for TeleInFrastrukturAalborg University (AAU)AalborgDenmark

Personalised recommendations