Wireless Personal Communications

, Volume 62, Issue 1, pp 183–199 | Cite as

A Chaotic Interleaving Scheme for the Continuous Phase Modulation Based Single-Carrier Frequency-Domain Equalization System

  • Emad S. Hassan
  • Xu Zhu
  • Said E. El-Khamy
  • Moawad I. Dessouky
  • Sami A. El-Dolil
  • Fathi E. Abd El-Samie
Article

Abstract

In this paper, we propose a chaotic interleaving scheme for the continuous phase modulation based single-carrier frequency-domain equalization (CPM-SC-FDE) system. Chaotic interleaving is used in this scheme to generate permuted versions from the sample sequences to be transmitted, with low correlation among their samples, and hence a better bit error rate (BER) performance can be obtained. The proposed CPM-SC-FDE system with chaotic interleaving combines the advantages of the frequency diversity, the low complexity, and the high power efficiency of the CPM-SC-FDE system and the performance improvements due to chaotic interleaving. The BER performance of the CPM-SC-FDE system with and without chaotic interleaving is evaluated by computer simulations. Also, a comparison between the proposed chaotic interleaving and the conventional block interleaving is performed. Simulation results show that, the proposed chaotic interleaving scheme can greatly improve the performance of the CPM-SC-FDE system. Furthermore, the results show that this scheme outperforms the conventional block interleaving scheme in the CPM-SC-FDE system. The results also show that, the proposed CPM-SC-FDE system with chaotic interleaving provides a good trade-off between system performance and bandwidth efficiency.

Keywords

SC-FDE CPM Chaotic interleaving Frequency-domain equalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Falconer D., Ariyavisitakul S., Benyamin-Seeyar A., Eidson B. (2002) Frequency domain equalization for single-carrier broadband wireless systems. IEEE Communications and Magagement 40(4): 58–66CrossRefGoogle Scholar
  2. 2.
    Gusmo A., Dinis R., Esteves N. (2003) On frequency-domain equalization and diversity combining for broadband wireless communications. IEEE Communication Letters 51(7): 1029–1033Google Scholar
  3. 3.
    Pancaldi F., Vitetta G., Kalbasi G.R., Al-Dhahir N., Uysal M., Mheidat H. (2008) Single-carrier frequency domain equalization. IEEE Signal Processing Magazine 25(5): 37–56CrossRefGoogle Scholar
  4. 4.
    Sari H., Karam G., Jeanclaude I. (1995) Transmission techniques for digital terrestrial TV broadcasting. IEEE Communications Magazine 33(2): 100–109CrossRefGoogle Scholar
  5. 5.
    Zhu X., Murch R. (2004) Layered space-frequency equalization in a single-carrier MIMO system for frequency-selective channels. IEEE Transaction on Wireless Communicaions 3: 701–708CrossRefGoogle Scholar
  6. 6.
    Nee R. V., Prasad R. (2000) OFDM for wireless multimedia communications. Artech House, NorwoodGoogle Scholar
  7. 7.
    Schulze H., Luders C. (2005) Theory and application of OFDM and CDMA wideband wireless communication. John Wiley, New YorkCrossRefGoogle Scholar
  8. 8.
    Anderson J., Aulin T., Sundeberg C. (1986) Digital phase modulation. Plennum Press, New YorkGoogle Scholar
  9. 9.
    Kiviranta M., Mammela A., Cabric D., Sobel D. A., Brodersen R. W. (2005) Constant envelope multicarrier modulation: Performance evaluation in AWGN and fading channels. IEEE Milcom 2: 807–813Google Scholar
  10. 10.
    Thompson S.C., Ahmed A.U. (2008) Constant-envelope OFDM. IEEE Transaction on Communications 56(8): 1300–1312CrossRefGoogle Scholar
  11. 11.
    Buzid, T., & Huemer, M. (2009). Single carrier transmission with frequency domain equalization (SC/FDE) system with a PAPR of unity. In Proceedings of ICACT-09 (Vol. 1, pp. 459–462). Feb. 2009Google Scholar
  12. 12.
    Tsai Y., Zhang G., Pan J.-L. (2005) “Orthogonal frequency division multiplexing with phase modulation and constant envelope design”. in IEEE Milcom 4: 2658–2664Google Scholar
  13. 13.
    Thillo W., Horlin F., Nsenga J., Ramon V., Bourdoux A., Lauwereins R. (2009) Low-complexity linear frequency domain equalization for continuous phase modulation. IEEE Transactions on Wireless Communications 8(3): 1435–1441CrossRefGoogle Scholar
  14. 14.
    Pancaldi F., Vitetta G.M. (2006) Equalization algorithms in the frequency domain for continuous phase modulations. IEEE Transactions on Communications 54(4): 648–658CrossRefGoogle Scholar
  15. 15.
    Hassan, E. S., Zhu, X., El-Khamy, S. E., Dessouky, M. I., El-Dolil, S. A., & Abd El-Samie, F. E. (2009). A continuous phase modulation single-carrier wireless system with frequency domain equalization. In Proceedings of ICCES-09, Cairo, Egypt, 14–16 Dec. 2009.Google Scholar
  16. 16.
    Hassan, E. S., Zhu, X., El-Khamy, S. E., Dessouky, M. I., El-Dolil, S. A., & Abd El-Samie, F. E. (2010). Performance evaluation of OFDM and single-carrier systems using frequency domain equalization and phase modulation. International Journal of Communication Systems (in press).Google Scholar
  17. 17.
    Barbieri A., Fertonani D., Colavolpe G. (2009) Spectrally efficient continuous phase modulations. IEEE Transactions on Wireless Communications 8(3): 1564–1572CrossRefGoogle Scholar
  18. 18.
    Castello D.J., Hagenauer J., Imai H., Wicker S. (1998) Applications of error-control coding. IEEE Transactions on Information Theory 44: 2531–2560CrossRefGoogle Scholar
  19. 19.
    Shi Y.Q., Zhang X.M., Ni Z.-C., Ansari N. (2004) Interleaving for combating error bursts. IEEE Circuts and systems magazine 4: 29–42 (First Quarter 2004)CrossRefGoogle Scholar
  20. 20.
    Nguyen, V. D., & Kuchenbecker, H. (2001). Block interleaving for soft decision viterbi decoding in ofdm systems. In IEEE VTC (Vol. 1, pp. 470–474). 2001.Google Scholar
  21. 21.
    Jovic B., Unsworth C. (2007) Chaos-based multi-user time division multiplexing communication system. IET Communications 1(4): 1751–8628CrossRefGoogle Scholar
  22. 22.
    Matthews R. (1998) On the derivation of a chaotic encryption algorithm. Cryptologia XIII 1: 29–41Google Scholar
  23. 23.
    Deffeyes, K. S. (1991). Encryption system and method. US Patent, no. 5001754, March 1991.Google Scholar
  24. 24.
    Fridrich J. (1998) Symmetric ciphers based on two-dimensional chaotic maps. International Journal of Bifurcation and Chaos 8: 1259–1284MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Han, F., Yu, X., & Han, S. (2006). Improved baker map for image encryption,” in ISSCAA, 2006, pp. 1273–1276.Google Scholar
  26. 26.
    Hassan, E. S., El-Khamy, S. E., Dessouky, M. I., El-Dolil, S. A., & Abd El-Samie, F. E. (2009). New interleaving scheme for continuous phase modulation based OFDM systems using chaotic maps. In Proceedings of WOCN-09, Cairo, Egypt, 28–30 April 2009.Google Scholar
  27. 27.
    Proakis J.G., Manolakis D.G. (1996) Digital signal processing: Principles, algorithms, and applications (3rd edn). Prentice Hall, NJGoogle Scholar
  28. 28.
    Proakis J. G., Salehi M. (1994) Communication Systems Engineering. Prentice Hall, New JerseyMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Emad S. Hassan
    • 1
  • Xu Zhu
    • 2
  • Said E. El-Khamy
    • 3
  • Moawad I. Dessouky
    • 1
  • Sami A. El-Dolil
    • 1
  • Fathi E. Abd El-Samie
    • 1
  1. 1.Department of Electronics and Electrical Communications, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt
  2. 2.Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolUK
  3. 3.Department of Electrical Engineering, Faculty of EngineeringAlexandria UniversityAlexandriaEgypt

Personalised recommendations