Wireless Personal Communications

, Volume 62, Issue 1, pp 31–39 | Cite as

On the Effect of Imperfect Cophasing in MRC and EGC Receivers Over Correlated Weibull Fading

  • Bojana Z. Nikolic
  • Goran T. Djordjevic
  • George K. Karagiannidis


This paper presents a comparative analysis of dual-branch maximal-ratio combining (MRC) and equal-gain combining (EGC) receivers with coherent modulations over correlated Weibull fading channels. The numerical and simulations results show the influence of imperfect cophasing, branch unbalancing and correlation on the error performance. It is interestingly shown that EGC has lower irreducible error floor than MRC in the presence of incoherent combining, while the higher value of the correlation coefficient results to lower irreducible error floor. Furthermore, the unbalance parameter has practically no influence on the irreducible error floor.


Bit error rate Diversity Fading channels Simulations Weibull distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babich F., Lombardi G. (2000) Statistical analysis and characterization of the indoor propagation channel. IEEE Transactions on Communications 48(3): 455–464CrossRefGoogle Scholar
  2. 2.
    Tzeremes G., Christodoulou C. G. (2002) Use of Weibull distribution for describing outdoor multipath fading. Antennas and Propagation Society International Symposium 1: 232–235Google Scholar
  3. 3.
    Cheng J., Tellambura C., Beaulieu N. C. (2004) Performance of digital linear modulations on Weibull slow-fading channels. IEEE Transactions on Communications 52(8): 1265–1268CrossRefGoogle Scholar
  4. 4.
    Simon M. K., Alouini M. S. (2005) Digital communication over fading channels, 2nd ed. Wiley, New YorkGoogle Scholar
  5. 5.
    Karagiannidis G. K., Zogas D. A., Sagias N. C., Kotsopoulos S. A., Tombras G. S. (2005) Equal-gain and maximal-ratio combining over Nonidentical Weibull fading channels. IEEE Transactions on Wireless Communications 4(3): 841–846CrossRefGoogle Scholar
  6. 6.
    Dong X., Beaulieu N. C. (2002) Average level crossing rate and average fade duration of low-order maximal ratio diversity with unbalanced channels. IEEE Communications Letters 6(4): 135–137CrossRefGoogle Scholar
  7. 7.
    Sagias N. C., Karagiannidis G. K., Mathiopoulos P. T., Tsiftsis T. A. (2006) On the performance analysis of equal-gain diversity receivers over generalized Gamma fading channels. IEEE Transactions on Wireless Communications 5(10): 2967–2974CrossRefGoogle Scholar
  8. 8.
    Najib M. A., Prabhu V. K. (2000) Analysis of equal-gain diversity with partially coherent fading signals. IEEE Transactions on Vehicular Technology 49(3): 783–791CrossRefGoogle Scholar
  9. 9.
    Sagias N. C., Karagiannidis G. K. (2005) Effects of carrier phase error on EGC receivers in correlated Nakagami-m fading. IEEE Communications Letters 9(7): 580–582Google Scholar
  10. 10.
    Sagias N. C., Karagiannidis G. K. (2005) Gaussian class multivariate Weibull distributions: theory and applications in fading channels. IEEE Transactions on Information Theory 51(10): 3608–3619MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gradsteyn I. S., Ryzhik I. M. (2000) Table of Integrals, Series, and Products, 6th ed. Academic, New YorkGoogle Scholar
  12. 12.
    Matolak D. W., Sen I., Xiong W. (2008) Generation of multivariate Weibull random variates. IET Communications 2(4): 523–527CrossRefGoogle Scholar
  13. 13.
    Jeruchim M. C., Balaban P., Shanmugan K. S. (2000) Simulation of communication systems—modeling, methodology, and techniques. Kluwer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Bojana Z. Nikolic
    • 1
  • Goran T. Djordjevic
    • 1
  • George K. Karagiannidis
    • 2
  1. 1.Faculty of Electronic Engineering, Department of TelecommunicationsNisSerbia
  2. 2.Department of Electrical & Computer EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations