Wireless Personal Communications

, Volume 58, Issue 4, pp 831–849 | Cite as

Graph-Theoretic Complexity Reduction for Markovian Wireless Channel Models

  • Hassaan Khaliq QureshiEmail author
  • Junaid Jameel Ahmad
  • Syed Ali Khayam
  • Veselin Rakocevic
  • Muttukrishnan Rajarajan


Accurate simulation and analysis of wireless networks are inherently dependent on accurate models which are able to provide real-time channel characterization. High-order Markov chains are typically used to model errors and losses over wireless channels. However, complexity (i.e., the number of states) of a high-order Markov model increases exponentially with the memory-length of the underlying channel. In this paper, we present a novel graph-theoretic methodology that uses Hamiltonian circuits to reduce the complexity of a high-order Markov model to a desired state budget. We also demonstrate the implication of unused states in complexity reduction of higher order Markov model. Our trace-driven performance evaluations for real wireless local area network (WLAN) and wireless sensor network (WSN) channels demonstrate that the proposed Hamiltonian Model, while providing orders of magnitude reduction in complexity, renders an accuracy that is comparable to the Markov model and better than the existing reduced state models.


Channel modeling Complexity reduction Hamiltonian model  Wireless networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguayo, D., Bicket, J., Biswas, S., Judd, G., & Morris, R. (2004). Link-level measurements from an 802.11b mesh network. ACM Sigcomm, 121–132.Google Scholar
  2. 2.
    Chen A. M., Rao R. R.: Wireless channel models—coping with complexity. Wireless multimedia network technologies, pp. 271–288. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  3. 3.
    Chen, A. M., & Rao, R. R. (1998). On tractable wireless channel models. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (vol. 2, pp. 825–830).Google Scholar
  4. 4.
    Cover, T., & Thomas, J. A. Elements of Information Theory, Second edition. ISBN: 0-471-24195-4.Google Scholar
  5. 5.
    Grinstead C. M., Snell J. L.: Introduction to probability: Second revised edition. American Mathematical Society (AMS). ISBN: 0821807498, Providence (1997)Google Scholar
  6. 6.
    Iqbal, A. & Khayam, S. A. (2008). Improving WSN simulation and analysis accuracy using two-tier channel models. IEEE International Conference on Communications, 349–353.Google Scholar
  7. 7.
    Ji, P., Liu, B., Towsley, D., & Kurose, J. (2002). Modeling frame-level errors in GSM wireless channels. IEEE Globecom, 3, 2483–2487.Google Scholar
  8. 8.
    Kemeny J. G., Snell J. L.: Finite markov chains. Springer-Verlag. ISBN: 0387901922, New York (1976)zbMATHGoogle Scholar
  9. 9.
    Khayam, S. A., & Radha, H. (2003). Markov-based modeling of wireless local area networks. ACM MSWIM, 100–107.Google Scholar
  10. 10.
    Khayam S. A., Radha H.: Linear-complexity models for wireless MAC-to-MAC channels. ACM WINET 11(5), 543–555 (2005)Google Scholar
  11. 11.
    Khayam, S. A., & Radha, H. (2006). Constant-complexity models for wireless channels. IEEE Infocom, 1–11.Google Scholar
  12. 12.
    Khayam, S. A, & Radha, H. (2007). On the impact of ignoring Markovian channel memory on the analysis of wireless systems. IEEE International Conference on Communications, 199–204.Google Scholar
  13. 13.
    Khayam S. A., Radha H., Aviyente S., Deller J. R. Jr.: Markov and multifractal wavelet models for wireless MAC-to-MAC channels. Elsevier Performance Evaluation 64(4), 298–314 (2007)CrossRefGoogle Scholar
  14. 14.
    Konrad A., Zhao B. Y., Joseph A. D., Ludwig R.: A Markov based channel model algorithm for wireless networks. ACM WINET 9(3), 189–199 (2003)Google Scholar
  15. 15.
    Köpke, A., Willig, A., & Carl, H. (2003). Chaotic maps as parsimonious bit error models of wireless channels. IEEE Infocom, 1, 513–523.Google Scholar
  16. 16.
    Mcdougall, J. M. (2003). Low complexity channel models for approximating flat Rayleigh fading in network simulations. PhD thesis from Texas A&M University.Google Scholar
  17. 17.
    Qureshi, H. K., Shahzad, K., Khayam, S. A., Rajarajan, M., & Rakocevic, V. (2008). Complexity reduction of Markov channel models for wireless networks using graph theory. IEEE Military Communications Conference, 1–7.Google Scholar
  18. 18.
    Turin W., van Nobelen R.: Hidden Markov modeling of flat fading channels. IEEE Journal of Selected Areas in Communications 16(8), 1809–1817 (1998)CrossRefGoogle Scholar
  19. 19.
    Wang H. S.: Finite-state Markov channel—a useful model for radio communication channels. IEEE Transactions on Vehicular Technology 44(1), 163–171 (1995)CrossRefGoogle Scholar
  20. 20.
    Willig, A. (2002). A new class of packet- and bit-level models for wireless channels. TKN-02-009, telecommunication networks group, Technical University, Berlin.Google Scholar
  21. 21.
    Zorzi, M., Rao, R., & Milstein, L. (1995). On the accuracy of a first-order Markov model for data transmission on fading channels. Proceedings of IEEE ICUPC’95, 211–215.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Hassaan Khaliq Qureshi
    • 1
    • 3
    Email author
  • Junaid Jameel Ahmad
    • 1
    • 2
  • Syed Ali Khayam
    • 1
  • Veselin Rakocevic
    • 3
  • Muttukrishnan Rajarajan
    • 3
  1. 1.School of Electrical Engineering & Computer ScienceNational University of Sciences and TechnologyIslamabadPakistan
  2. 2.Universität KonstanzKonstanzGermany
  3. 3.School of Engineering and Mathematical SciencesCity UniversityLondonUK

Personalised recommendations